

©2014 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org - www.jisar.org

Volume 7, Issue 2
May 2014

ISSN: 1946-1836

Journal of

Information Systems Applied Research

In this issue:

4. Taxonomy of Common Software Testing Terminology: Framework for Key

Software Engineering Testing Concepts

Robert F. Roggio, University of North Florida

Jamie S. Gordon, University of North Florida

James R. Comer, Texas Christian University

13. Microsoft vs Apple: Which is Great by Choice?

James A. Sena, California Polytechnic State University

Eric Olsen, California Polytechnic State University

29. Information Security in Nonprofits: A First Glance at the State of Security in

Two Illinois Regions

Thomas R. Imboden, Southern Illinois University

Jeremy N. Phillips, West Chester University

J. Drew Seib, Murray State University

Susan R. Florentino, West Chester University

39. A Comparison of Software Testing Using the Object-Oriented Paradigm and

Traditional Testing

Jamie S. Gordon, University of North Florida

Robert F. Roggio. University of North Florida

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org - www.jisar.org

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer-
reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP,
the Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency
is currently quarterly. The first date of publication is December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on
Information Systems Applied Research, which is also double-blind peer reviewed. Our sister
publication, the Proceedings of CONISAR, features all papers, panels, workshops, and
presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not aware
of the identities of the reviewers. The initial reviews happen before the conference. At that point
papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers,
and non-journal papers. The unsettled papers are subjected to a second round of blind peer
review to establish whether they will be accepted to the journal or not. Those papers that are
deemed of sufficient quality are accepted for publication in the JISAR journal. Currently the target
acceptance rate for the journal is about 40%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at
publisher@jisar.org.

2014 AITP Education Special Interest Group (EDSIG) Board of Directors

Wendy Ceccucci

Quinnipiac University

President – 2013-2014

Scott Hunsinger

Appalachian State Univ

Vice President

Alan Peslak

Penn State University

President 2011-2012

Jeffry Babb
West Texas A&M

Membership Director

Michael Smith
Georgia Institute of Technology

Secretary

George Nezlek
Univ of North Carolina
Wilmington -Treasurer

Eric Bremier
Siena College

Director

Nita Brooks
Middle Tennessee State Univ

Director

Muhammed Miah
Southern Univ New Orleans

Director

Leslie J. Waguespack Jr
Bentley University

Director

Peter Wu
Robert Morris University

Director

S. E. Kruck
James Madison University

JISE Editor

 Nita Adams
State of Illinois (retired)

FITE Liaison

Copyright © 2014 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

mailto:editor@jisar.org
mailto:editor@jisar.org

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org - www.jisar.org

Journal of

Information Systems Applied Research

Editors

Scott Hunsinger
Senior Editor

Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

JISAR Editorial Board

Jeffry Babb
West Texas A&M University

Wendy Ceccucci
Quinnipiac University

Gerald DeHondt II

Janet Helwig
Dominican University

James Lawler
Pace University

Muhammed Miah
Southern University at New Orleans

George Nezlek
University of North Carolina Wilmington

Alan Peslak
Penn State University

Doncho Petkov
Eastern Connecticut State University

Li-Jen Shannon
Sam Houston State University

Karthikeyan Umapathy
University of North Florida

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org - www.jisar.org

Taxonomy of Common Software Testing

Terminology: Framework for Key Software
Engineering Testing Concepts

Robert F. Roggio

broggio@unf.edu

Jamie S. Gordon
jamie.s.gordon@unf.edu

School of Computing

University of North Florida
Jacksonville, FL 32224, United States

James R. Comer

j.comer@tcu.edu

Computer Science Department
Texas Christian University

Fort Worth, TX 76129, United States

Abstract

Most accredited computing programs have at least a single course addressing a software development
process. These courses typically include a discussion of fundamental concepts and terminology that
includes software testing. While many key concepts are in common use, terms describing testing are

often misunderstood, misused, and misguided. The purpose of this paper is to provide a framework for
commonly used and misused terminology central to software testing, and also to demonstrate their
application in three common classes of testing: static and dynamic testing, black box and white box
testing, and verification, validation, and acceptance testing.

Keywords: software testing, static and dynamic testing, black box and white box testing.

 SOFTWARE TESTING

Background
The term, software testing, often evokes
conflicting understandings of what is meant. What
is being tested, what is a test, who performs the
tests, and what is a “tester”? Additionally, what is

the difference between a program having a fault,
or error, or failure, or defect, and what are the
various kinds of tests and what are their

similarities and differences? The authors of this
paper feel that a basic understanding of these
principals is essential in order to provide a
framework of terminology when software
engineers – or, for that matter, any stakeholder,
discusses the subject. Is it possible to talk about
an essential activity, such as testing, such that all

participants have a consistent understanding of
the meaning? Sadly, rarely is this the case, as
evidenced by Naik and Tripathy, Galin, and

mailto:broggio@unf.edu

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org - www.jisar.org

others. (Niak & Tripathy, 2008) (Galin, 2004)
(Juran, 2000) It seems as if one must define
context before positive conversation may ensue.
Thus, the effort to develop a common base of

understanding appears to have merit.
Interestingly, the importance of a paper on
essential concepts arose during development of
another paper that sought to address differences
between traditional testing procedures and
object-oriented testing procedures. While
discussing the subject of testing, the authors

noted different understandings, and perceptions,
of many commonly used terms. Humbling as it
was, this was the reality that prompted the
development of the current paper.

Definition of Software Testing

Software testing is a verification process for the
assessment of software quality and a process for
achieving that quality (Naik & Tripathy, 2013).
Interestingly, software testing is used to support
the interests of all stakeholders of an application.
In particular, software testing is essential for:
 end-users to determine whether developed

or otherwise maintained software meets
specifications,

 developers to ensure that the code
successfully implements a credible design,

 designers to ensure that their solution is
one that meets specifications,

 and, to testers, to ensure that products to

be delivered do indeed meet the client’s
needs.

Moreover, stakeholders include:
 customer service representatives who are

often charged with responding to clients

who 'call' to communicate a malfunction,
 and, to administration and finance

individuals who may bill clients for software
provided.

The list is endless and all have a vested interest
in what is called - 'testing.'

Given this backdrop, it should be clear that

different levels of testing need to be done by
various stakeholders at different times (during or
subsequent to development). To do so requires
that procedures be designed to uncover issues -
all with various views of outcomes. Thus, in order
to frame this paper, the authors have limited the

treatment of testing to those stakeholders whose
main concern is the design, implementation
(programming), and end user testing.
Please also note that while the categories are
indeed different in many respects and hold
different meanings for different stakeholders,

there is considerable overlap. The specific
workplace for software development will no doubt
have its own vocabulary in addressing the world
of software testing. To begin, it is important to

establish a basic set of definitions.

 TESTING TERMINOLOBY

Terms
Four useful and related terms, are frequently
encountered when dealing with events that occur

when software fails to perform as expected (Niak
& Tripathy, 2008). References to these terms:
failure, error, fault, and defect are common in
the industry; yet, unfortunately, although their

means are related, they have different
interpretations among practitioners. As an

overview:
 A failure is defined as a behavior exhibited

by a system that does not match what has
been described in specifications.

 An error is an incorrect system state which
could lead to a failure.

 A fault is the cause of an error. In general

a fault leads to an error which leads to a
failure, although not strictly so (Naik &
Tripathy, 2013).

 A defect, also according to Niak & Tripathy,
refers to a design issue that leads to faults,
although this is not as strict a definition

(Niak & Tripathy, 2008).

Similar to Niak and Tripathy’s terminology
framework may be found in Galin. (Galin, 2004)
His approach is very similar to that of Niak and
Tripathy. Stressing that as practitioners we are
mainly interested in software failures that disrupt

or interrupt the use of software, he asserts that
we must examine the relationship between
software faults and failures. (Galin, 2004)

Galin begins with the simplest term, software
error and offers that this can be a simple
grammatical error in a line of code or a logical

error in carrying out one or more of the client’s

requirements. But, once stated, Galin continues
to point out that not all software errors become
software faults. A software error may indeed
cause improper functioning of the software in
general or in a specific application but in other
instances, the error may not cause a problem in

the software as a whole; sometimes “part of
these cases … the fault may be corrected or
“neutralized” by subsequent code lines.” (Galin,
2004)

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org - www.jisar.org

Galin goes on to assert that we are interested in
the relationship between software faults and
software failures. Recognizing that not all
software faults end up as software failures, he

points out that a software failure occurs only
when it is “activated.” Thus in many executions
of a piece of software, the software fault is never
discovered because specific software executions
do not activate the software fault. Of course,
then, in these instances, no software failure is
discovered.

Galin captures his approach to software errors,
faults, and failures nicely in Figure 1.

Figure 1 Software Errors, Software Faults and
Software Failures (Galin, 2004)

Still others have different ‘takes’ on these terms.
Walia and Carver state that an error is a mistake
in the human thought process while trying to
understand given information, solve problems or
use methods and tools. (Wallia & Carver, 2012)
Software faults are defined by IEEE as “an

incorrect step, process, or data definition in
computer programs.” Favaro and her colleagues
state that a software failure is “the inability of
code to perform its required function within
specified performance requirements.” (Favaro, et
al, 2013)

Down to Earth Examples
Let's consider a very simple example to illustrate
these differences. Consider a specification that
requires a very basic computation such as
distance = rate * time. This is simple enough.
This is a basic formula given in physical science

101. Algebraically, solving for rate would be
defined as rate = distance / time. Applying this
relationship to an automated solution designed to
compute distance as a function of rate and time,

we can address the standard definitions more
closely.

Defect

Starting with design, perhaps the formula is
erroneously misunderstood and designed as
distance = rate + time (vice distance = rate *
time). Clearly, if coded incorrectly, the resulting
outputs would likely produce what might appear
as a reasonable result; that is, until software
testing is undertaken. A software developer,

tester, end user, analyst, etc. might discover that
the answers are incorrect in specific test cases.
The defect is in the design. The formula is
incorrect. The 'solution' to the requirement is

incorrectly specified and designed, and although
the program may well run to, end of job, the

defect is (hopefully) clear.

Stutzke integrates treatment of these terms by
defining a defect as “An observation of incorrect
behavior caused by a failure or detection of a
fault.” (Stutzke, 2005) The failure in this case is
an incorrect result (discovered during testing)

and is the manifestation of a fault or incorrect
result; Stutzke goes on to point out that the fault
is an error that could cause a program to fail or
potential failure. He defines error as the amount
by which the result is incorrect.

Error

The failure was the production of an incorrect
system state: the producing of an incorrect
value. The state of the system is now incorrect.
For the distance = rate + time, the resultant state
of distance is incorrect.

Stutzke cites that an error can be the simple
result of a misunderstanding. He cites the fault-
tolerance discipline that addresses these terms:
in Fault Tolerance the discipline distinguishes
between human action (a mistake), the
manifestation or result of the mistake (hardware
or software fault), the specific result of the fault

(a failure), and the amount by which the result is

incorrect (the error). Again, the defect is the
observation caused by the failure (event) or
detection of a fault.

Fault
The fault is the cause of the error which was a

design defect leading to this fault. A fault led to
a failure, the incorrect result discovered by
testing. The fault here is implementing the design
defect (distance = rate + time) which manifests
itself in the detection of a failure.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org - www.jisar.org

Failure
It is commonplace to say the fault (cause of the
error) led to a failure, where the failure in our
example is the behavior of the application (adding

rate to time in lieu of multiplying rate by time)
during run time to produce the expected result.
The production of an unexpected result points out
a fault.

Conclusion
While all this might at first glance appear to be

unimportant, the differences between discovering
errors in design as opposed to discovering failures
in implementation are quite significant from a
cost perspective. Thus, realizing that a software

defect is a design issue vis' a vis' one associated
with implementation can affect the overall

development and testing processes and can
negatively impact the understanding of what the
engineering of software really means.

It is important for a software engineer to have a
commonly accepted set of terminology for
communications, which is central to modern

software development practices. To successfully
communicate, we need a common language.
Precision in identifying root causes of software
errors (design defect, implementation fault, etc.)
is essential to good software development
practices so that proper best practices can

appropriately address the wide-ranging origins of

software errors.

 TYPES OF TESTING

Software testing can be classified into many
subcategories, often depending on one’s

perspective and often based on terms in common
use in one’s working environment. According to
Software Test Engineering @ Microsoft, a number
of test categories arises from the breaking down
of work items in a workplace. This paper suggests
a list that includes functional testing, specification
testing, security testing, regression testing,

automation testing and beta testing. The paper

cites that the list is intentionally incomplete and
requests supplements to the list. One response
included unit/API testing, acceptance testing,
stress/load testing, performance benchmark
testing, and release testing. Still another
response included performance testing, stress

testing, interoperability testing, conformance
testing, static testing, and maintainability testing.
(blogs.msdn.com/b/chappell/archive/2004/03/2
4/95718.aspx) This diversity clearly supports that
there are simply many types of testing, and that
types of tests appear to be centered on one’s

focus or interest. Given this, the authors have
taken liberty to divide software testing into a few
different broad categories to include static and
dynamic testing, white-box and black-box

testing, and verification and validation testing.

Static and Dynamic Testing

Static Testing
In general, static testing can be performed on
both documentation (specification documents,

design documents, etc.) and source code
(pseudo-code, source programs, scripts, etc.).
(Johnson, 1996) Pressman discusses static
testing tools as those that embody tools used to

test code, specialized testing languages, and
requirements-based testing tools. (Pressman,

1997) Code-based testing tools process source
code (or a program description language) as the
primary input and undertakes several analyses
resulting in generation of test cases. They also
identify a number of poor programming practices
(identifiers defined and not used;
incompatibilities between definition and use of

attributes and more). Specialized testing
languages enable a software developer to develop
detailed test specifications and describe each test
case and the logistics needed for its execution.
Requirements-based testing tools inspect user
requirements to suggest test cases or classes of

tests to exercise the requirements. All of these

are accommodated without any execution of
code.

Certainly careful static analysis of documentation
can reveal many issues. Defects may be
discovered in the specification and/or design

stages as well, without any need for any actual
program development and subsequent execution.
For example, Structure Charts for procedural
development and many UML diagrams (class
diagrams, object diagrams, subsystem and
package diagrams, sequence and
communications diagrams) are all candidates for

testing without any 'program' execution. All of

these may well lead to the discovery of defects by
observing how, for example, a sequence of object
responsibilities (methods) are invoked in a
sequence diagram used to capture the procedural
flow in a scenario captured from a use case. Such
an analysis might lead to the movement of

responsibilities from one object to another in the
interests of good design.

Consider static analysis of requirements. Static
analysis of requirements can take place by
visually inspecting the specification document

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org - www.jisar.org

and test for sufficiency, necessity, feasibility,
completeness, and measurability. While indeed
we are reviewing specifications, tests of this
nature are static and do test the specifications.

Consider static analysis in design. Consider then
a simple sequence diagram that is used to show
the collaboration of objects and their method calls
that are 'designed' to implement a scenario in a
use case. In developing the sequence diagram, it
is reasonably easy to discover that responsibilities

assigned to an object, that is, methods, are
poorly placed. For example, good cohesive
design encourages the incidence of attributes and
the methods that process these attributes to be

located within the same object. In developing the
sequence diagram, poor design can readily show

that the methods and the data are not together.
This kind of static test can easily result in
modifying the object design so as to improve
cohesion and hence provide for a better design.
Again, this is a simple static test in tracing
through a scenario in its accommodation in OO
design. Additional static design tests include

viewing, for example, UML diagrams to determine
degree of coupling, object obsolescence,
candidates for dividing and conquering complex
objects and more.

Traditionally, static testing often addresses

programming and deals with analysis of written

code through walk-throughs and/or code
inspections that result in algorithm analysis, and
syntax or semantic checks (Nail and Tripathy,
2008). However, no actual execution is done in
this stage as 'static' testing implies. It is purely
investigation of the structure of code and

hypothesizing what might happen at run-time.
Many compilers and integrated development
environments (IDE’s) are designed to greatly
assist programmers with this process. An
example of static testing in programming is
running a static analyzer looking for unreachable
code, or 'dead code' that often arises in programs

that have been modified over the years. In cases

where programs have been maintained over a
period of many years, they may have undergone
many changes. Oftentimes a programmer must
surgically delve into existing code to add features
or correct errors without corrupting the existing
functionality. Usually the programmer is given

insufficient time to do a thorough analysis and
must modify the program for a redeployment
within often severely imposed time constraints.
The programmer must react quickly and precisely
and is not afforded the time he/she might need in
order to undertake a thorough analysis.

A static view of code may reveal shortcomings via
visual 'smells' that suggests the need for
refactoring. Code smells, in and of themselves,
are not bugs and do not necessarily lead to a non-

functioning program. They may, however indicate
weaknesses in design and may lead to code
failure in the future. Long, multi-functional
classes, methods with large numbers of
parameters and options and many more smells
suggested by Fowler may well suggest
refactoring. (Fowler, 2012)

Dynamic Testing
In contrast to static testing, dynamic testing
involves execution of a design or written code

(most dynamic testing is done on code).

Pressman states that “dynamic testing tools
interact with an executing program checking path
coverage, testing assertions about the values of
specific variables, and otherwise instrumenting
the execution flow of the program.” (Pressman,
1997) Niak and Tripathy state that dynamic
testing involves analysis of behavioral and

performance of the design and code (Naik and
Tripathy, 2008), while Schulmeyer and
MacKenzie cite that dynamic analysis methods
involve the execution of a development activity
designed to “detect errors by analyzing the
response of a product to sets of input data.”

(Schulmeyer and MacKenzie, 2000) Clearly,

desired outputs and/or ranges of output must be
known ahead of time. Too, testing is the most
frequent dynamic analysis activity. It is
interesting to note that while dynamic testing is
most often associated with code execution,
dynamic testing can be applied during

prototyping – especially during software
requirements verification and validation. While
the precise outputs are likely not always known,
it can sometimes be determined that the system
response to an input meets system requirements.

To show how broadly the principles of dynamic

testing extend, Schulmeyer includes the running

of static analysis tools as part of what he calls
Implementation Verification and the running of
dynamic analysis tools as part of Validation. We
will concentrate on dynamic testing of code.
Dynamic Testing of Code represents a very large
and encompassing set of tools for software

testing. As an example of practical dynamic
testing, consider the following real-world example
that formed a part of dynamic testing of major
programs.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org - www.jisar.org

Consider a program called Percent Execute; a
program used long ago in the U.S. Air Force. Its
purpose was to monitor the run-time behavior of
programs as part of the testing activities before

deployment of the software. The purpose of
Percent Execute was simply to discover how much
(literally) of a program was actually executed
given an input dataset. Given specific inputs (and
several different sets of inputs), just what
portions of a program were / were not executed?
Clearly, different input data would cause different

execution paths to be executed. The
methodology called for a source program to be
instrumented with source code probes (discussed
later) that were inserted into every program unit

(method, function, paragraph, module, etc.).
Afterwards, the program was re-compiled and

executed with carefully designed sets of input
data to determine what parts of the program were
being executed. Dynamic testing clearly (and
often) revealed that key parts of the executable
code were not exercised. This was disturbing
given that essential edits were discovered to go
unexecuted but were assumed to have been. For

example, edits in financial programs to ensure
financial and data integrity were sometimes
simply not executed for some input data. Without
dynamic testing, making this determination
would have been very difficult and would have
involved inspecting output files record by record

– a very labor-intensive process. Running the

instrumented program might reveal that 30% or
40% of a program was actually executed (specific
code segments executed were reported).
Naturally, all segments of the program were not
expected to run for all input test data sets, as the
program logic accommodated. But for specific

sets of inputs, key parts of the programs were
expected to run.
This is a great example of dynamic testing - run
the program and monitor its run time behavior.
Testing such programs dynamically pointed out
serious defects (design issues implemented in
code) causing errors (production of an incorrect

state); the fault was the cause of the error

(logical design resulting from poor design) and
the resulting failure arose from the resultant
behavior (manifestation of the fault(s) through
reports generated by summary data produced by
the instrumented program executed upon
program completion).

(The source code ‘probes’ are merely integer
counters in a single array. Each programming
construct (function, paragraph, method, etc.)
was instrumented to add 1 to a counter in the
array that was associated with that construct.

Upon conclusion of the program, the value of each
array element represented the total number of
times that construct was executed, ranging from
zero to a higher number. A function was

appended to the program and was executed just
prior to normal program termination. This code
accessed the array and displayed the numbers of
times each programming construct was
executed.)

Most modern IDEs offer the ability to monitor

variables and their changing values during
runtime. Students using Eclipse, NetBeans, or a
number of other popular IDEs are familiar with
these features that can track program execution

allowing one to step through a program one
statement at a time and observe how the values

of attributes change. These are further examples
of dynamic testing and support Stutzke’s
contention that dynamic analysis is the process of
“…operating a system or component under
controlled conditions to collect measurements to
determine and evaluate the characteristics and
performance of the system or component.”

(Stutzke, 2005)

Black-Box and White-Box Testing
Another grouping of test categories, not mutually
exclusive from static and dynamic testing, is
black-box and white-box testing. When creating

test cases, various sources need to be considered

such as specifications captured, perhaps, from
use cases or user stories, design documents
captured in structure charts or UML diagrams,
and actual source code or pseudo-code, captured
in a wide range of IDEs. Also, there is available
documentation.

Pressman sums up the differences between black-
box and white-box testing rather nicely: “Any
engineering product (and most other things) can
be tested in one of two ways: 1) knowing the
specified function that a product has been
designed to perform, tests can be conducted that

demonstrate each function is fully operational, at

the same time searching for errors in each
function; 2) knowing the internal workings of a
product, tests can be conducted to ensure that ‘all
gears mesh.’, that is, that internal operation
performs according to specification and all
internal components have been adequately

exercised. The first test approach is called black-
box testing and the second, white-box testing.”
(Pressman, 1997)

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org - www.jisar.org

White-box Testing
(Sometimes called structural or glass-box)
testing is done through examination and
knowledge of source code. White-box testing

examines execution flow through algorithms via
'coverage measures' such as examination of
statement coverage, path coverage and branch
coverage investigations. White-box testing, in its
many forms, monitors the internals of a program
and tracks and determines 'how' the program
executes, how much of the code is being

exercised. Also considered is how many tests
through an algorithm are necessary to assure a
minimal or acceptable level of testing, what
constitutes a minimal set of tests needed to

assure a high level of reliability, how 'robust' the
program must be and similar tests.

White-box testing considers many program /
system execution characteristics. Consider this
more closely. Recognizing that one can never
assert that a program is error-free, white-box
testing addresses factors such as how many edits
need to be included in the code to assure an

acceptable level of reliability? In particular, is the
program one that deals with safety-critical
applications, aircraft or weaponry
instrumentation, financial systems, or health
systems? How much code must be added and
tested to assure acceptable levels of reliability

and how much reliability is really needed? These

are a few of the factors whose answers are used
to determine the degree to which edits and other
checks are included in both the design and
implementation to achieve desired levels of
reliability, robustness, and fault tolerance. These
are all execution time tests and are verified

during run time.

In white-box testing, there needs to be some
assurance that code that must be executed is
indeed being executed via tests with specific input
data. In a way, it is close to but involves both
static and dynamic testing. In dynamic testing,

test results can point out programming anomalies

or areas not executed or time spent in program
components (perhaps implying that these are
candidates for optimization). But white-box
testing (in the coding sense) goes deeply into the
internals of the program, to the code itself. The
testing yields significant analyses citing

statements executed or branches not taken, or
execution paths not executed and similar low
level information to the developer. The critical
thinking is that white-box testing involves the
detailed execution analysis of the program's guts;

that is, statements, branches, paths, function
calls, method calls, and more.
While dynamic testing is used to collect
measurements and evaluate characteristics and

performance of a component, and can be seen as
part of validation, white-box testing, on the other
hand, is at the lowest level and is needed for the
developers (analyst and programmers) to
consider in assuring effective dynamic testing.

Black Box Testing

In contrast to white-box testing is black-box
testing, sometimes referred to as end-user
testing. In black-box testing, the internals of
program execution are not an issue; rather, key

concerns center on the production of the correct
output given specific inputs. Are the results

timely and accurate? And are all of the
requirements accommodated?

In black-box testing, the program is viewed as a
black box. The program must read in the inputs,
process the data, and check the outputs. While
this sounds simple, it is not. Certainly running

the test is easy, but the design of suitable test
cases may well be an onerous task as a host of
carefully designed sets of tests must be
generated, oftentimes including boundary
testing, stress testing, regression testing,
functional testing, and other related black-box

testing issues. All of these tests are designed to

determine if the application produces the correct
outputs given a variety of inputs that exercise /
test both the functional and non-functional
requirements (Kulak and Guiney, 2004).

Testing requires both functionality (outputs

produced given inputs) and non-functional testing
(system loading, reliability, robustness,
scalability, portability, maintainability, security
and more. Black-box testing is often done as part
of validation by end users, hence the reason for it
sometimes being referred to as end-user testing.

Black-box testing is done without knowledge of

the internal workings of code (Turner and Robson,
1993) Instead test cases are derived from the
specifications or design or any other
documentation that implies functionality. In this
way, black-box testing is only concerned with
what can be generated from running the

application. Defects are often discovered in
black-box testing and may be traced back to
design issues or perhaps implementation issues.
Failures (behavioral issues; the producing of
unintended results) may also be readily observed
via black-box testing. In contrast, the cause(s) of

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org - www.jisar.org

the error (fault) and the producing of an incorrect
system state (error) are more typically
discovered via white-box testing.

Verification, Validation and Acceptance
Testing
These tests reflect still another category of testing
– again, not mutually exclusive of static and
dynamic testing and black-box and white-box
testing - using terms often in common use with
different stakeholders. Verification is often

combined with another software engineering
concept known as validation. These are two
different types of testing with different goals in
mind, unlike static and dynamic testing which

both seek to find faults in code and defects in
design on the development side.

Stutzke sums up the differences between
verification and validation. He says that
verification deals with evaluation of products in a
given [development] activity “to determine both
correctness and consistency with respect to the
products and standards provided as input to that

specific activity.” Verification ensures that “you
have built it right.” In contrast, validation
confirms that the product, as provided (or as it
will be provided) will fulfill its intended use.
Validation ensures that “you built the right thing.”
(Stuzke, 2005) In more detail, consider the

following elaboration of these definitions.

Verification testing is the pursuit of establishing
that a particular phase of a software system has
satisfied the requirements which had been
decided upon before embarking on that phase
(Naik and Tripathy, 2013) Thus, verification
testing is typically white-box testing but may also

include black-box testing. Essentially, verification
is done by the developers or maintainers of
software to ensure that the software meets
requirements This is often the activity undertaken
by software developers typically during unit
testing. It follows from this that although
verification testing is generally white-box testing,

clearly the developer is interested in producing

correct outputs given specific inputs. Specifically,
the product is built right.

Validation testing is done to assure that software
meets the needs of those who intend to use it
(Naik and Tripathy, 2013). Validation testing is,

thus, often black-box testing and is concerned
with ensuring functionality. Validation testing
provides the customer confidence that the
software system is adequate for its intended use.
Essentially successful validation testing provides
assurance to the user that their expectations

have been met. Customers typically undertake
validation exercises to ensure the right thing was
built.

While verification testing is used to eliminate
defects and faults that cause error states and
visible failures, validation testing shows that
there are no failures. Stated equivalently, in
verification: programmer runs unit tests against
specifications and eliminates defects and faults
causing error states and visible failures; in

validation: end user runs tests to determine if
specific inputs result in specific outputs. Clients /
end-users run tests to ensure no failures are
experienced.

One sometimes sees the term, acceptance testing

and acceptance criteria. Acceptance criteria are
often defined by the designers in the hopes that
satisfying the criteria adequately demonstrates to
the user that their needs have been met. Also
acceptance testing is designed to help the end-
user gain confidence in the code.

4. CONCLUSIONS

The paper has provided definitions of fault,
errors, failures and defects with specific examples
to provide clarity in their use. While the paper did
not propose a study to verify the approaches

offered by researchers in the literature review,

value lies in establishing a solid basis of definition
and use of these commonly misunderstood and
misused key definitions both in the workplace and
in the classroom. Practitioners and students must
use precise definitions when referring to defects,
errors, faults, and failures.

The authors have also applied these terms to
three major categories of testing: static and
dynamic testing, white-box and black-box
testing, and verification, validation, and
acceptance testing. While there are other
categories of testing that are often unique to

specific software development methodologies,

most of these categories can easily fit within a
framework of the three testing categories
provided.

5. REFERENCES

Favaro, Francesca, M., David Jackson, and Joseph
Saleh, Software Contributions to Aircraft
Adverse Events: Case Studies and Analyses
of Recurrent Accident Patterns and
Failure Mechanisms, Reliability
Engineering & System Safety 113, May 2013.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org - www.jisar.org

Fowler, Martin, contributions by: Kent Beck, John

Brant, William Opdyke, Don Roberts,
Refactoring: Improving the Design of

Existing Code, Addison- Wesley, 2012,
ISBN: 0-201-48567-2.

Galin, Daniel, Software Quality Assurance,

Pearson / Addison Wesley, 2004 (ISBN 0-
201-70945-7), Chapter 2, What is Software
Quality?

Juran, J.M. and A. Blanton Godfrey, Juran’s

Quality Control Handbook, 5th edition,
McGraw-Hill, New York ISBN-13: 978-

0071165396, 2000.

Kulak, Daryl and Eamonn Guiney, Use Cases:
Requirements in Context, Addison Wesley,
2004, ISBN: 0-321-15498-3.

Morris S. Johnson, Jr., “A Survey of Testing

Techniques for Object-Oriented Systems,”
Proceedings of the 1996 Conference of the

Centre for Advanced Studies on Collaborative
Research (CASCON '96).

Naik, K., & Tripathy, P., Software Testing And
Quality Assurance: Theory And Practice, John
Wiley & Sons, 2008. p. 7-27.

Pressman, Roger, Software Engineering: A
Practitioner’s Approach, McGraw-Hill, 1997,
ISBN 0-07-052182-4.

Schulmeyer, C. Gordon and Garth R. MacKenzie,

Verification & Validation of Modern Software
–Intensive Systems, Prentice-Hall PTR, 2000

ISBN: 0-13-020584-2.

Stutzke, Richard D., Estimating Software-

Intensive Systems, Pearson Education Inc.,

2005 ISBN 0-201-70312-2.

Turner, C.D.; Robson, D.J., "The State-Based
Testing of Object-Oriented Programming
Conference on Software Maintenance, CSM-
93, Proceedings, 1993 ISBN 0- 8186-
4600-4.

Walia, Gursimran S., and Jeffrey C. Carver, Using

Error Abstraction and Classification to
Improve Requirement Quality: Conclusions
from a Family of Four Empirical Studies,
Springer Science + Business Media, LLC
2012.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 13

www.aitp-edsig.org - www.jisar.org

Microsoft vs Apple: Which is Great by Choice?

James A. Sena
jsena@calpoly.edu

Eric Olsen

eolsen@calpoly.edu

Orfalea College of Business,
California Polytechnic State University

San Luis Obispo, CA 93407, USA

Abstract

We set out to examine the performance and practices of Microsoft and Apple since the Collins Great by
Choice [GBC] study. In Great by Choice, Collins and Hansen developed an explanatory framework based

on their comparative study of seven pairs of high performing companies and matched comparison
companies. One of these pairs was Microsoft and Apple. For these two, we examined financial
performance for the eleven-year GBC comparison period (1991 - 2001) and the analysis period (2002 -
2012). Using this financial analysis, we developed and examined research questions about whether

Apple and Microsoft were or were not employing the GBC practices over our research period. Although
GBC seemed to have sound advice for companies, our findings were mixed. During the research period,
Apple went from under-performing to outperforming Microsoft. However, the causal relationship of the

GBC practices to the financial reversal is not clear. Both Microsoft and Apple varied in their use of the

GBC practices over the research period.

Keywords: Leadership, management best practices, practice versus performance, comparison case
studies, Great by Choice, Apple, Microsoft

1. INTRODUCTION

The rivalry between Microsoft and Apple began
when Microsoft chose to license its operating

system to different computer manufacturers. This
resulted in several different machines running

Windows while Apple chose to keep its operating
system to itself and to construct its own
hardware. Today this rivalry is still evident in
Apple and its Mac OS, and Microsoft and Windows
8. At Apple, the one-size-fits-all approach
emphasizes a particular product. Microsoft has
over 100 Windows 8 devices marketed. This

exemplifies the strategies of Microsoft and Apple
in a nutshell—Apple limits your choices; Microsoft

multiplies them. For Microsoft, the level of
support and technical help may suffer. Pros and
cons aside, the contrasting strategies between
the two companies will continue to define the

significant differences between Microsoft’s and
Apple's business results (Gilbert 2012).

In a series of works by Collins, and then with
Hansen, the authors sought to establish principles
and practices that were unique to successful
companies. In Great by Choice [GBC], they
examined paired companies over an extended
period until 2002. One of these pairs was

Microsoft and Apple. Collins and Hansen identified
Microsoft as one of the companies that chose to

mailto:jsena@calpoly.edu
mailto:eolsen@calpoly.edu

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 14

www.aitp-edsig.org - www.jisar.org

be “great” by implementing the GBC practices
they identified, whereas Apple did not. Their GBC
principles and practices applied to companies
within their period of analysis (up to 2002), but

what about beyond? Collins makes the case that
falling from greatness did not contradict his
conclusions because during the dynastic period
the companies were engaging in those practices
while financially great. His assumption was that
the companies are no longer “great” because they
were no longer using the practices. In this paper,

we examine Microsoft and Apple to determine if
“great” performance is explained by the
application of GBC practices or a reduction in
performance is explained by discontinuing using

those practices that purportedly made them
“great.” Perhaps the answer is somewhere in-

between. We begin with a review of the
conclusions and practices from Collins’ previous
works (Table 1).

Table 1: Quick reference to Collins and group
series of books

In Built to Last, Collins described the practices of
great companies. In Good to Great, Collins
showed how “great” companies evolve over time
and how long-term sustained performance could
be engineered into the enterprise. He identified a
set of elite companies that made the transition
from mediocre to extraordinary results and

sustained those results for at least fifteen years.
After the transition, the good to great companies
generated cumulative stock returns that beat the
overall stock market by an average of seven

times in fifteen years, better than twice the
results delivered by a composite index of the

world's greatest companies.

Subsequent to Good to Great, Collins and Hansen
extended their research work in GBC by
examining a set of companies that they refer to
as “10x” cases. During the study period, these
companies outperformed other companies in their

industry by 10 times or more. One of the
organizations that met their criteria was
Microsoft.

These companies, specifically Microsoft in our
study, started from a position of vulnerability,
rose to become great by choice with outstanding
financial performance. Microsoft did so in an

unstable environment characterized by forces
that were out of their control, fast moving,
uncertain, and potentially harmful. Collins
matched companies with firms that failed to
become great in the same extreme environments,
specifically Apple in our study. They used the
distinction between winners and “also-rans” to

uncover the distinguishing practices that allow
some to thrive in uncertainty.

In this paper, we replicated the methodology

presented in Collins and Hansen’s GBC over the
end of their period of examination (1991 – 2001)

and extended it into a second period (2002 -
2012). Our goal is to determine if the practices
developed and related performance that this
particular pair of companies demonstrated in
their dynastic period continued (or increased) or
discontinued (or decreased) based on financial
and practitioner research as formulated in GBC.

We set out to examine the financial performance
and practices, Microsoft and Apple, from Collins’
GBC study. We examined their financial
performance for the eleven-year GBC comparison
period (1991-2001) and the research period

(2002 - 2012). We used these financial analyses

along with the qualitative practice analysis to
develop and evaluate research questions as to
whether Apple and Microsoft were or were not
employing the GBC practices. In the sections that
follow, we describe our financial and qualitative
practice analyses and conclusions.

2. FINANCIAL PERFORMANCE ANALYSIS

GBC Procedure
Collins and Hansen selected and compared
companies based on financial performance from
1972 to 2002. They observed that the true test of

a company’s ability to handle a turbulent business

environment was accomplished by comparing like
companies operating in the same environment.
Table 2 and Figure 1 (see Appendix) show the
Total Price Return percentage for the GBC and
comparison company (Microsoft and Apple) for
the two periods: the last 11 years of the GBC

period (1991-2001) and the 11 years since
(2002-2012). The first test we performed was to
verify that the Microsoft was still financially out
performing Apple in the last eleven years of the
GBC comparison period. We examined how the
two companies performed in comparison to the

Title Reference Objective

Built to Last Collins, Jim and Porras,

Jerry (2001)

Identify practices that enable the

transformation from a mediocre

(good) company to a great

company.

Good to Great Collins, Jim (2001) Identify practices of great

companies.

How the Mighty

Fall

Collins, Jim (2009) Identify mechanisms that cause

once great companies to fail.

Good to Great and

the Social Sector

Collins, Jim (2011) Identify practices of great

companies in the social sector.

Great by Choice Collins, Jim and Hansen,

Mortenson (2011)

Uncertainty, chaos luck -- why

some thrive despite them all

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 15

www.aitp-edsig.org - www.jisar.org

Standard and Poor’s 500 (S&P 500) and to each
other. Microsoft performed 12.8 times better than
the S&P 500. Apple did much worse than the S&P
500. We looked at the Microsoft-Apple pairing. It

showed that the “great” company, Microsoft,
outperformed Apple by a factor of 42.7 in this
period.

GBC-Redux. We looked at the 11-year update
period 2002-2012. Apple went from being worse
than the general market to 29.9 times better and

48.8 times better than Microsoft. To test Collins’
and Hansen’s proposition that GBC practices lead
to “great” financial performance and the lack of
these same practices leads to worse performance,

we would expect that Apple should show evidence
of using GBC practices during the update period.

Microsoft should show a decrease in GBC practice
usage due to their significantly decreased
performance relative to the S&P 500 and Apple.

Another financial performance check we
performed was to examine the companies’
current ratio and debt-to-equity ratio. The data

are included in Table 3 and Figures 2 and 3. This
data is comparable to the data provided in GBC

that concluded that the “great” companies hold
current ratios better than comparisons 72% of
the time and have better total debt-to-equity
ratios 64% of the time. The analysis concurs with

Collins and Hansen for the end of the GBC period.

Microsoft outperformed Apple on both measures.

However, in the update period, Microsoft’s
average current ratio, though 13% better than
Apple’s, reduced by 23%, whereas Apple only
reduced by 1%. Microsoft’s debt-to-equity ratio

was much worse in the subsequent 11 years.
Apple’s average debt-to-equity reduced by a
factor of 30 and is now 6 times less than
Microsoft’s. This data provides the basis for the
research proposition that Apple used GBC
practice in the update period and Microsoft did
not.

Based on the financial analysis we constructed
two research propositions related to the GBC
practices. These research propositions, shown in
Table 4, depict expectations for GBC practice or
lack of practice given our financial analysis of the
update period.

3. PRACTICE OBSERVATIONS

In GBC, 10X leaders were both "disciplined" and
"creative," "prudent" and "bold”—they went fast
when they must, but slow when they could—they

were consistent, yet open to change. According to
Collins and Hansen, successful companies were
often not as innovative as the control companies.
In some cases, they were actually less innovative.

Rather, they managed to "scale innovation,”
introducing changes gradually, then moving
quickly to capitalize on those that showed
promise. The successful companies were not
necessarily the most likely to adopt internal
changes as a response to a changing
environment. "The 10X companies changed less

in reaction to their changing world than the
comparison cases" (Murray 2011). Table 5
presents the GBC practices.

Collins and Hansen began the process of
identifying and further explicating the unique

factors and variables that differentiate GBC
companies. One of the most significant
differences is the quality and nature of leadership.
We used these practice descriptions, and those in
GBC, to identify practice usage by Microsoft and
Apple. To better understand the context and
business environment we considered a number of

other factors that complemented and correlated
with the GBC practices. These included counts by
year of acquisitions and divestitures; joint
ventures; infrastructure incidents; significant
personnel actions; philanthropic activity;
litigation; financial announcements; and

recognitions/presentations. These factors were

particularly helpful in analyzing and assigning
ratings in situations where there was considerable
activity. Examples are litigation dealing with the
acquisition activity of Microsoft and the personnel
changes and leadership ratings of Apple.

We performed a comprehensive practice analysis
of Microsoft and Apple depicted in Table 4. To
verify the research questions we examined an
comprehensive set of sources and references. Of
note, there was neither uniform nor consistent
availability of company data. For example,
Wikipedia was somewhat useful for providing a

ready supply of current links and sources. For

Microsoft, the company websites overwhelmed us
with data. We visited both company websites and
examined their financial declarations for the
period of study. There was much variability in the
form and content of reporting. Media and press
releases were quite useful—this involved sifting

through two to three hundred references for each
of the years. Another source we used was
Brint.com, a specialized business search engine.
This source allowed us to consider academic
journals, business magazines and newspapers,

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 16

www.aitp-edsig.org - www.jisar.org

and industry publications while deploying various
search filters.

Overall, we rated both companies as shown in

Table 4 on the four practices: Fanatic Discipline,
Productive Paranoia, Empirical Creativity, and
Level 5 Ambition and noted whether the data
supports or does not support the research
proposition. We scored articles and incidents
using GBC discussions and descriptions. The
scores were converted into a 7-point scale

ranging from “strongly disagree that the practice
is being used” (1) to “strongly agree the practice
is being used” (7). If the practice rating supports
our research question on practice usage based on

financial performance (Table 5), then our analysis
supports Collins’ and Hansen’s work in GBC.

In the remainder of this paper, we present a case
description of our analysis and conclusions with
respect to GBC practice usage by Apple and
Microsoft in the period from 2002 to 2013. At the
conclusion of the paper, we summarize our
findings and make recommendations for

application and future research.

Research Question 1: Did Microsoft Stop
 Using GBC Practices?
Microsoft is the leading software producer

worldwide (van Kotten 2011). As of 2012, they

dominate both the PC operating systems and
office suite markets. The company also produces
a wide range of other software for desktops and
servers. They are involved in areas including
internet search (with Bing); the video game
industry (with the Xbox and Xbox 360 consoles);

the digital services market (through MSN); and
mobile phones (via the Windows Phone OS). In
June 2012, Microsoft announced that it would be
entering the PC vendor market for the first time
with the launch of the Microsoft Surface tablet
computer.

The GBC study ended in 2001; in that period,

Microsoft met the “great” criteria. In 2001,
Microsoft was still firing on all cylinders. However,
this was not always an accurate representation,
especially in the latter part of the update period
2000 – 2012. Microsoft's fiscal year 2006 revenue
was more than double Apple's FY '06 revenue:

$44.3 billion to $19.3 billion. What has happened
since? Apple's revenues have more than tripled
while Microsoft's have grown by less than 50%.
Microsoft still employs substantially more people
than Apple does, although the size of Microsoft's
workforce has dropped a bit, from 93,000 in 2009

to 89,000 in 2010. Apple's reported headcount
has been rising, with a significant increase from
34,300 in 2009 to 46,600 in 2010. Apple's
revenue per employee at the end of its 2010 fiscal

year was substantially higher than Microsoft's:
$1.4 million versus $702,000. Likewise, Apple's
profits per employee were $300,429, compared
with $211,236 for Microsoft (Machlis 2011).
Table 6 presents our compilation of the four
practices for the update period along with other
considerations that mitigate the practices ending

in 2012 with respect to Microsoft. The compilation
better clarifies by presenting chronologically as
well as in summary form and introducing more
granularity overall. Not all practices have a score

for each year when there were no significant
events.

Fanatic Discipline [Neutral]. To serve the
needs of customers around the world and to
improve the quality and usability of products in
international markets, Microsoft localized many of
their products. Localizing a product may involve
modifying the user interface, altering dialog

boxes, and translating text. Localization,
although an attractive international strategy, can
be a deterrent to consistency.

Microsoft has been active in acquisitions
throughout its history. Over the past eleven

years, they have acquired 64 companies. Table 6

showed the distribution over the eleven years of
our study. Many of these acquisitions denote
entries into new or developing marketing areas.
Rarely is Microsoft a first mover. Microsoft often
enters during the shakeout stage of the product
life cycle. This is evidenced by their recent entry

of a tablet into the crowded iPad/Samsung foray.
Another example is their entry into the cloud
computing market for Windows (Fried 2008) and
their intent to open a chain of Microsoft-branded
retail stores (Freid 2009). Over the past 20 years,
Microsoft has exhibited discipline and endurance
in its “not first mover” strategy.

Productive Paranoia [Somewhat]. Microsoft
contracts most of their manufacturing activities to
third parties. These include Xbox 360 and related
games; Kinect for Xbox 360; various retail
packaged software products and Microsoft
hardware. Their products include some

components that are available from only one or
limited sources. Their Xbox 360 console and
Kinect for Xbox 360 included key components
supplied by a single source. The integrated
central processing unit/graphics processing unit is
purchased from IBM, and the supporting

http://en.wikipedia.org/wiki/Web_search_engine
http://en.wikipedia.org/wiki/Bing
http://en.wikipedia.org/wiki/Video_game_industry
http://en.wikipedia.org/wiki/Video_game_industry
http://en.wikipedia.org/wiki/Xbox
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/MSN
http://en.wikipedia.org/wiki/Windows_Phone
http://en.wikipedia.org/wiki/Microsoft_Surface
http://en.wikipedia.org/wiki/Tablet_computer
http://en.wikipedia.org/wiki/Tablet_computer
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 17

www.aitp-edsig.org - www.jisar.org

embedded dynamic random access memory chips
are purchased from Taiwan Semiconductor
Manufacturing Company. However, they usually
have multiple sources for raw materials, supplies,

and components, and are often able to acquire
component parts and materials on a volume
discount basis (U.S. Securities Exchange
Commission 2011).

As the smartphone industry boomed beginning in
2007, Microsoft struggled to keep up with its

rivals Apple and Google in providing a modern
smartphone operating system. As a result, in
2010, Microsoft revamped their aging flagship
mobile operating system [OS], Windows Mobile,

replacing it with the new Windows Phone OS. This
was a change in strategy in the smartphone

industry. Microsoft is now working closely with
smartphone manufacturers to provide a
consistent user experience. In May 2012,
Microsoft released the next generation Windows
8 software designed to power devices ranging
from tablets to desktop computers (AFP Relax
2012).

Empirical Creativity [Somewhat Agree].
Microsoft (Kate 2005) has long been known as a
company that tightly controls all aspects of its
marketing and communications with customers,
business partners, analysts, and the media. In

the mid section of our study, Microsoft made

efforts to change its image and develop a more
open marketing culture. The fact that they
reached out to the media and analyst community
to discuss the change was news in itself.
Internally they changed the way engineering and
marketing work together to create a more

cohesive and seamless product development
process. This process was initially used in three
projects: new versions of Office, Visual Studio,
and Exchange.

Most of Microsoft’s software products and
services are developed internally. Internal

development allows them to maintain competitive

advantages that come from closer technical
control over their products and services (U.S.
Securities Exchange Commission 2011). This also
gives them the freedom to decide which
modifications and enhancements are important
and when they should be implemented. They

strive to obtain information as early as possible
about changing usage patterns and hardware
advances that may affect software design. Before
releasing new software platforms, they provide
application vendors with a range of resources and
guidelines for development, training, and testing.

Level 5 Ambition [Neutral]. When Bill Gates,
Chairman of Microsoft, announced his intention to
step down in July 2008, he stressed that he was
not retiring but just making a transition (BBC

News, 2006). Even though he no longer would be
the chair in two years’ time, as chairman he
intended to maintain a key role in advising the
firm. In 2008, he had assumed the title of chief
software architect and stayed on as company
chairman; Steve Ballmer took over as chief
executive (U.S. Securities Exchange Commission

2011).

In the 1990s, critics began to assert that
Microsoft used monopolistic business practices

and anti-competitive strategies. This placed
unreasonable restrictions on the use of its

software. Both the U.S. Department of Justice
and European Commission found the company in
violation of antitrust laws. Many forms of litigation
continued throughout the period of our study.
There were eighteen separate incidents from the
time period of 2002 to 2006.

One of Microsoft's business tactics, described by
an executive as "embrace, extend and
extinguish," initially embraces a competing
standard or product; extends it to produce their
own version which is incompatible with the
standard; and, in time, extinguishes competition

that does not or cannot use Microsoft's new

version (Rodgers 2008). Various companies and
governments sued Microsoft over this set of
tactics, resulting in billions of dollars in rulings
against the company. Microsoft claimed that the
original strategy was not anti-competitive, but
rather an exercise of its discretion to implement

features it believes customers wanted.

In Research Question 1, we proposed that
Microsoft stopped the use of GBC practices based
on our financial analysis. However, our
examination of the four practices did not provide
enough evidence to confirm the proposition.

Research Question 2: Did Apple Start Using
GBC Practices?
From the period of 2002 to 2012, we noted a
steady progression of improvement in Apple’s
Fanatic Discipline and “Productive Paranoia” and
a relatively stable set of “Empirical Creativity”

activities. However, in “Level 5 Ambition” there
was mixed evidence due to questions about Steve
Jobs’ performance, as well as the introduction of
products such as the iPad. Table 7 depicts the four
practices and the corresponding set of activities.

http://en.wikipedia.org/wiki/Apple_Inc.
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Windows_Mobile
http://en.wikipedia.org/wiki/Windows_Phone
http://en.wikipedia.org/wiki/Windows_8
http://en.wikipedia.org/wiki/Windows_8
http://en.wikipedia.org/wiki/Monopoly
http://en.wikipedia.org/wiki/United_States_Department_of_Justice
http://en.wikipedia.org/wiki/European_Commission
http://en.wikipedia.org/wiki/Antitrust
http://en.wikipedia.org/wiki/Embrace,_extend_and_extinguish
http://en.wikipedia.org/wiki/Embrace,_extend_and_extinguish

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 18

www.aitp-edsig.org - www.jisar.org

Fanatic Discipline [Somewhat Agree].
Apple's leadership has been pervasive
(Mirchandani, The New Technology Elite: How
Great Companies Optimize Both Technology

Consumption and Production 2012). Traditional
supply chain disciplines like managing an
extended network of contract manufacturers and
component suppliers are fully in force, but beyond
the areas Apple has led in at least two vital ways.
The first is in its advantage of the digital supply
chain. By fostering the development of a

secondary market in applications for its iPhone,
the company has shown again (as with iTunes)
that consumer product revenue growth with zero
inventories is not only possible, but also

repeatable. The other area in which Apple's
supply chain leadership is increasingly relevant is

in the retail experience. As one of a handful of
extremely vertically integrated brands, Apple's
retail chain achieves almost unimaginable
success in its stores.

Productive Paranoia [Somewhat Agree].
Apple has built a retail store chain that is the envy

of even long-time retailers (Mirchandani, The New
Technology Elite: How Great Companies Optimize
Both Technology Consumption and Production
2012) . It has built an elaborate global network of
suppliers and contract manufacturers that has
confused the traditional accounting that

economists use to determine global trade. In

addition to the elaborate physical supply chain, it
has had to integrate the digital supply chain as
iPhones are activated via iTunes at customer
homes and via carriers. As it rolls out its iCloud,
it has built one of the biggest data centers in the
world. It has built an ecosystem of apps and

games around its products at a never seen before
scale. Admirably, it built its supply chain in a
much more volatile industry than that of
consumer products or chemicals. Of course, Apple
has itself driven the high-tech industry volatility
with its own pace of product introductions. Dell
used to be regarded as a benchmark of efficiency

with its “build-to-order” supply chain. It

manufactured most of the order content and even
paid in advance. Apple raised the bar by
showcasing a new product, guesstimating likely
demand, and tuning its supply chain day-by-day
and hour-by-hour. It broke traditional rules of
demand forecasting because there was little

historical data from which to forecast for a version
1.0 iPod or iPhone or iPad. It balanced the risk of
overproducing or increasing buffer inventory and
taking write-offs versus under- producing and
losing customers to the next competitive product.
It took that risk time and again, and made the

rest of the industry do the same. In addition, the
risks are not insignificant when talking about
three million iPads in their first quarter of
introduction.

Empirical Productivity [Somewhat Agree].
One example of Apple’s creativity was the
introduction of the Apple store. Apple is the most
successful retailer in history, with an incredible
$50,000 in sales per square foot in their best
stores (there is no close second) and roughly $13

billion in revenue in ten years. For the Apple
stores to succeed, they had to convey the Apple
ideal of creative exploration and self-expression.
That meant that stores had to look beyond just

moving product to changing customers’ lives by
actively helping them express their creativity. The

stores were envisioned as places where
consumers could test-drive Apple products and
learn the “digital arts” of using those products;
where they could join Apple retail employees and
other consumers in a real-life, brick-and-mortar,
non-virtual community. Steve Jobs saw the stores
as places that could best succeed—really, could

only succeed—if they strove to inspire greatness
in everyone who walked through the door.

According to Collins (J. Collins, The Most Creative
Products Ever 1997) if you want to build an
enduring great company, don’t make the mistake

the leaders of Apple Computer made in the late

1980s. After the remarkable success of the
Macintosh computer and the departure of Steve
Jobs, Apple’s leaders spent their time trying to
come up with the next insanely notable
innovation. Instead, they should have spent their
time being social inventors, designing an

environment that would be the seedbed for many
insanely significant innovations over decades to
come. Upon his return to Apple, Steve Jobs
changed both himself and ultimately Apple. He
focused on what to do when your current product
line becomes obsolete, and building a unique
culture that could not easily be copied. Ultimately,

he experimented with social inventions. Apple

was fast becoming part of the next wave of
enduring great companies being built not only by
technical or product visionaries but by social
visionaries—those who see their company and
how it operates as their greatest creation and who
invent entirely new ways of organizing human

effort and creativity.

Level 5 Ambition [Somewhat Agree]. Steve
Jobs famously refused to release a new Apple
product, or even a product enclosure, until it was
as close to perfection as possible. Yet, no one

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 19

www.aitp-edsig.org - www.jisar.org

allowed perfectionism to paralyze Apple’s creative
processes. Depending on the form it takes,
perfectionism is not necessarily a impediment to
creativity. A growing body of research in

psychology has revealed that there are two forms
of perfectionism: healthy and unhealthy.
Characteristics of what psychologists see as
beneficial perfectionism include striving for
excellence and holding others to similar
standards, planning, and strong organizational
skills. Healthy perfectionism is internally driven in

the sense that it is motivated by strong personal
values for things like quality and excellence
(Steve Jobs). Conversely, unhealthy
perfectionism is externally driven. External

concerns come up over perceived parental
pressures, need for approval, a tendency to

ruminate over past performances, or an intense
worry about making mistakes (not Steve Jobs).
Healthy perfectionists exhibit a deep concern for
these outside factors.

Leaders who excel despite an uncertain
environment tend to turn first to "empirical

evidence, empirical experience, and empirical
data rather than immediately seeking what
experts or others advise them to do," Collins
says. This hands-on approach "often leads 10Xers
to highly creative outcomes, since the outcomes
are based on empirical validation” (Grams 2011).

He points to Apple founder Steve Jobs, who risked

much of his company's success on the iPod.
"You'd think it was this big creative thing that
came out of nowhere," says Collins. "It was not.
... The MP3 was already out in the world, and
[Apple employees had] made an iPod for
themselves. The company fired what we call

'bullets' in taking small empirical steps to verify
the concept, and then they went big with it."

In Research Question 2, we determined that
Apple started using the GBC practices based on
our financial analysis. Our assessment of Apple’s
use of the four practices confirmed the

proposition.

4. CONCLUSIONS

Overall, we conclude that GBC has sound advice
for companies. Given the life cycles of
organizations, products and industries there is an

ebb and flow that is evident in the financial
bottom line. However, in GBC Collins and Hansen
attempted to explain what some of these
ingredients might be in the form of practices. Our
approach to the study replication and extension
was rigorous and required extensive subjective

analysis. In our selection of Apple and Microsoft,
we focused on a single pair in a dynamic industry.

There is a tendency among academicians to

dismiss whitepapers, practitioner publications,
and web-based articles as not meeting the
rigorous standards required for academic
journals. Collins’ works demonstrate the value of
combining financial and practitioner analysis.

In our paper, we applied Collins’ and Hansen’s

techniques to see if the practices they identified
apply beyond the dynastic period of identification
and to companies who adopt the practices. Does
the momentum continue, or as in the case of

Apple verses Microsoft, does performance and
practice change over time. One final caveat:

eleven years is a long time in the technology
industry. Collins did examine the companies in his
study on a year-by-year basis but
summarized/coalesced his findings in a binary
fashion. Our practitioner analysis attempted to
replicate this process wherein we showed a
succession of significant events that tempered

our determinations.

Microsoft reduced their use of GBC practices. The
decline of Microsoft may be based on moving
away from GBC practices. For example, the
change in leadership or perhaps the proliferation

of products, many of which were cannon balls

being shot after the battle was almost over (e.g.
the entry of Bing into the search engine wars
dominated by Google) cost Microsoft over $2
billion in losses. For Apple, that started using the
practices, their performance improved. The
adoption of GBC practices for an organization is

best depicted by the resurgence of Apple.
Isaacson (Isaacson 2011) narrates the ebb and
flow of Steve Jobs from his formation of Apple,
the release and success of the Macintosh, the
deviation from fanatic discipline, the learning at
Pixar, and the return and re-vitalization in the
four-product business plan.

Apple had changed (Arthur 2012). From just
under 10,000 full- and part-time staff in
September 1998, it has grown to being 50,000
strong, with around 30,000 in its retail store
chain. The core of the company remains small and
relatively tight-knit. On August 9, 2011, Apple's

market capitalization briefly rose to $341.5
billion, edging it just ahead of Exxon, until that
morning the highest-valued company in the
world. The company Steve Jobs had co-created
assembling computers, the one that Michael Dell
had suggested shutting down 14 years earlier

http://www.computerworld.com/s/article/9219023/Wall_Street_Tech_more_valuable_than_oil

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 20

www.aitp-edsig.org - www.jisar.org

because it had no future, was now worth more
than any other. The stock fell back by the end of
the day, but it had made its mark; the
transformation of Apple from financial basket

case to ruler was complete. At the end of the day,
it was worth $346.7 billion; Microsoft was worth
$214.3 billion (Elmer-Dewitt 2013).

The rivalry with Microsoft still flickers
occasionally, but strategically they virtually
ignore each other. AppTle has won in music. Its

position in phones and tablets has pushed
Microsoft to playing catch-up, yet Microsoft can
still rely on its sheer heft of 1.5 billion PC
installations to ensure a stream of replacements

and new sales for Office. Apple’s reputation has
been transformed from a put-upon, also-ran PC

maker to world-spanning design brand.

5. REFERENCES

Achido, B. (2012, June 25). Microsoft's Yammer
deal may cost too much, come too late.
Retrieved from USA Today:

http://www.usatoday.com/tech/news/story/
2012-06-25/microsoft-yammer-
aquisition/55811172/1

AFP Relax. (2012, May 21). Microsoft launches
social network So.cl, claims not to compete

with Facebook. Retrieved from Yahoo OMG:
http://ph.omg.yahoo.com/news/microsoft-

launches-social-network-cl-claims-not-
compete-110708921.html

Anonymous. (2010). The New Breed of
Leadership. Pharmaceutical Executive.

Apple Inc. (2011, October 18). Apple Reports
Fourth Quarter Results. Retrieved from Apple

Press Release:
http://www.apple.com/pr/library/2011/10/1
8Apple-Reports-Fourth-Quarter-Results.html

Apple Inc. (2011, July 19). Apple Reports Third
Quarter Results. Retrieved from Apple Press
release:

http://www.apple.com/pr/library/2011/07/1

9Apple-Reports-Third-Quarter-Results.html

Apple Inc. (2012, January 24). Apple Reports
First Quarter Results. Retrieved from Apple
Press Release:
http://www.apple.com/pr/library/2012/01/2
4Apple-Reports-First-Quarter-Results.html

Apple Inc. (2012, May 21). Apple Reports Second

Quarter Results. Retrieved from Apple Press
Release:

http://www.apple.com/pr/library/2012/04/2
4Apple-Reports-Second-Quarter-
Results.html

Arthur, C. (2012). Apple vs. Google vs. Microsoft:

Battle for digital supremacy. Kogan, Page.

BBC News. (2006, June 15). Bill Gates: A
timeline. Retrieved from new.BBC.co.uk:
http://news.bbc.co.uk/2/hi/business/508563
0.stm

Bloomberg BusinessWeek. (2012, September 4).
Bloomberg BusinessWeek Financials.

Retrieved from Bloomberg BusinessWeek:
http://investing.businessweek.com/research

/stocks/financials/financials.asp?ticker=PGR

Clarke, K. (2012, February). The No-Excuses
Guide to Greatness. Retrieved from
Association Now:

http://www.asaecenter.org/Resources/ANow
Detail.cfm?ItemNumber=144608

Collins, J. &. (2001). Built to Last: Successful
Habits of Visionary Companie. HarperCollins.

Collins, J. &. (2011). Great by Choice:
Uncertainty, Chaos, and Luck--Why Some
Thrive Despite Them Al. Harper Collins.

Collins, J. (1997, May). The Most Creative
Products Ever. Inc.

Collins, J. (2001). Good to Great: Why Some
Companies Make the Leap...And Others
Don't. Harper Collins.

Collins, J. (2009). How The Mighty Fall: And Why
Some Companies Never Give In.

HarperCollins.

Collins, J. (2011, September 30). How to manage
through chaos. Fortune.

Collins, J. (2011). Good To Great And The Social
Sectors: A Monograph to Accompany Good to
Great. HarperCollins.

Collins, J. a. (2011). Great by Choice.
HarperCollins.

Darrell, R. (2012, May). Microsoft vs. Apple: The
History Of Computing [Infographic].
Retrieved 5 9, 2013, from Geek:
http://www.bitrebels.com/geek/microsoft-
vs-apple-the-history-of-computing-

infographic/

Elmer-Dewitt, P. (2013, May 6). Apple Cracks the
Fortune 10. Fortune.

Fontana, J. (2007, July 23). Microsoft has Plenty
to Change. Network World.

http://www.computerworld.com/s/article/9137163/Apple_Update
http://www.computerworld.com/s/article/9137060/Microsoft_Update_Latest_news_features_reviews_opinions_and_more

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 21

www.aitp-edsig.org - www.jisar.org

Freid, I. (2009, February 12). Microsoft follows
Apple into the Retail Business. Retrieved from
CNET CBS Interactive.

Fried, I. (2008, October 27). Microsoft launches

Windows Azure. Retrieved from CNET CBS
Interactive.

Fubini, D. P. (2006). Mergers: Leadership,
Performance and Corporate Health. Insed
Business Press.

George, B. (2007). True North: Discover Your
Authentic Leadership. John Wiley & Sons.

Gilbert, J. (2012, 10 25). Microsoft vs. Apple In
Two Photos: The Battle Over The Many And

The Few. Retrieved 05 08, 2013, from
Hufington Post:
http://www.huffingtonpost.com/2012/10/25
/microsoft-vs-apple_n_2017801.html

Google. (2012). Google Finance. Retrieved from
Google.com:
http://www.google.com/finance?q=NASDAQ
%3AMSFT&fstype=ii&ei=zaFQUMmRHISSiAL
MKA

Grams, C. (2011, October 10). A review of the
new Jim Collins book “Great By Choice”.

Retrieved from Dark Matter Matters:
http://darkmattermatters.com/2011/10/26/
a-review-of-the-new-jim-collins-book-great-

by-choice/

Griffith, T. (2011). The Plugged-In Manager: Get
in Tune with Yur People, Technology and
Organization to Thrive. John Wiley and Sons.

Heritage, C. (2006). Microsoft Innovation through
HR's Partnership. Strategic HR Review,
Mar/Apr 24-27.

Iansiti, A. M. (2009). Intellectual Property,
Architecture, and the Management of
Technological Transitions: Evidenced by

Microsoft. Journal of Production and
Innovation Management, Vol. 26.

Isaacson, W. (2011). Steve Jobs. Simon and

Schuster.

Iskowitz, M. (2011). Harrison & Star. Medical
Marketing and Media.

Kate, M. (2005, October 100). Microsoft Opens

the Lines of Communication. B to B, pp. 1-42.

Machlis, S. (2011, April 19). Apple vs. Microsoft
by the numbers. Computerworld.

Meyrick, M. (2001). In Search of Excellence.
British Journal of Administrative
Management, 24-25.

Mirchandani, V. (2010). The New Polymath:

Profiles in Compound Technology
Innovations. John Wiley and Sons.

Mirchandani, V. (2012). The New Technology
Elite: How Great Companies Optimize Both
Technology Consumption and Production.
John Wiley and Sons.

Murray, A. (2011). Turbulent Times, Steady

Success. Wall Street Journal, Oct.

Peters, T. J. (1989). In Search of Excellence:

Lessons from America's Best-Run Companies.
Harper Collins.

Porter, M. (1985). Competitive Advantage:
Creating and Sustaining Superior

Performance. Simon & Schuster.

Porter, M. (1998). Competitive Strategy:
Techniques for Analyzing Industries and
Competitors. Simon & Schuster.

Rodgers, W. (2008, August 18). Intel exec: MS
wanted to 'extend, embrace and extinguish'
competition. ZDNet.

Snyder, B. (2010, April 22). Who's buying
Microsoft's outsourcing excuses? Info World.

Solomons, D. (1983). In Search of Excellence:
Lessons from America's Best-Run Companies.
Journal of Accountancy.

Stengel, J. (2011). Grow: How Ideals Power
Growth and Profit at the World's Greatest

Companies. Random House.

Tu, J. (2011, October 8). Microsoft named best
multinational workplace. Seattle Times.

U.S. Securities Exchange Commission. (2011).
Microsoft 10-K Report. Washington, DC: U.S.
Government.

van Kotten, M. (2011, August 23). Global

Software Top 100 Edition 2011: Highlights.
Retrieved from SoftwareTop100.org:
http://www.softwaretop100.org/global-
software-top-100-edition-2011

Wingfield, N. a. (2011, January 4). Microsoft
Alliance With Intel Shows Age. Wall Street

Journal.

Wunker, S. (2011). Capturing New Markets: How
Smart Companies Create Opportunities
Others Don't. McGraw-Hill.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 22

www.aitp-edsig.org - www.jisar.org

Editor’s Note:

This paper was selected for inclusion in the journal as a CONISAR 2013 Distinguished Paper. The

acceptance rate is typically 7% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2013.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 23

www.aitp-edsig.org - www.jisar.org

Appendix

Table 2. Total Price Return Percentage Comparison

Figure 1. Total Return Microsoft vs Apple

Percentage

Change Last 11

Years GBC

Times better

than S&P 500

Times better

than Comparison

Company

Percentage

Change

Times better

than S&P

500

Times better than

Comparison

Company

S&P 500 Index 319 54

Microsoft 5280 12.8 42.7 -6 0.6

Apple 26 0.3 4510 29.9 48.8

Total Price Return % and Times Better

GBC (1991-2001) Update (2002-2012)

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 24

www.aitp-edsig.org - www.jisar.org

Table 3: Median Current Ratio and Debt-to-Equity Ratio

Figure 2. Current Ratio Microsoft vs Apple

Avg Current

Ratio

Avg

Debt/Equity

Ratio

Avg Current

Ratio

Avg

Debt/Equity

Ratio

Microsoft 3.57 0.00 2.74 0.06

Apple 2.42 0.30 2.39 0.01

Current Ratio and Debt/Equity Ratio

GBC (1991-2001) Update (2002-2012)

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 25

www.aitp-edsig.org - www.jisar.org

Figure 3. Debt to Equity Ratio Microsoft vs Apple

Table 4. Proposed GBC practice usage update period 2002-2012

Research

Question

Company GBC Practices

(per financial

analysis)

Fanatic

DISCIPLINE

Productive

PARANOIA

Empirical

CREATIVITY

Level5

AMBITION

Summary

Practices

GBC practices

(per Literature)

(Agree/Disagree)

1 Microsoft Stopped using 4.4 3.3 5.3 3.6 4.2 Neutral

2 Apple Started using 5.0 5.4 5.4 4.9 5.2 Somewhat Agree

1 Strongly disagree

2 Disagree

3 Somewhat disagree

4 neutral

5 Somewhat agree

6 agree

7 Strongly agree

Financial Observations Practices Observations (according to Literature)

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 26

www.aitp-edsig.org - www.jisar.org

Table 5. Great by Choice practices.

Practice Analogy Description

Fanatic Discipline

[The 20 Mile

March]

 Consistent execution without overreaching in good

times or underachieving in bad times. (1) the

discomfort of unwavering commitment to high

performance in difficult conditions, and (2) the

discomfort of holding back in good conditions. GBC

leaders and companies demonstrate the discipline to

make well-reasoned, measured commitments and

Productive Paranoia

Leading above

the Death Line

 Learning how to effectively manage risk so that the

risks your organization takes never put it in mortal

danger.GBC leaders continuously scan the

environment “zoom out” mode and then “zoom in”.

This puts specific plans and resources in place to

cover lower probability eventualities if the effect is

potentially devastating

Return on Luck “The critical question is not whether you’ll have luck,

but what you do with the luck that you get.

Empirical Creativity

[Firing Bullets,

Then

Cannonballs]

Unique ability to collect and analyze their own data.

GBC companies are data driven - testing concepts in

small ways and then making adjustments rather than

placing big, unproven bets. But then placing big bets

when you have figured out exactly where to aim.

Level 5 Ambition

Ambition for the success of the organization rather

than self -- many of those classified in this group

displayed an unusual mix of intense determination

and profound humility; often having a long-term,

personal sense of investment in the company and its

success, cultivated through a career-spanning climb

through the company’s ranks. Personal ego and

individual financial gain are not as important as the

long-term benefits to the team and the company

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 27

www.aitp-edsig.org - www.jisar.org

Table 6. Microsoft Four Practices and Considerations

Year Acquisitions Infrastructure Personnel Philanthropy Litigation Financial
Recognition/

Presentations

2002 4 4

2003 2 1 0 0 3 0 0

2004 2 0 0 0 5 0 0

2005 7 1 0 0 3 0 0

2006 11 2 2 0 3 0 0

2007 8 1 3 1 3 3 3

2008 16 1 0 0 0 1 0

2009 6 1 0 0 0 1 0

2010 3 2 1 0 0 0 1

2011 3 0 1 1 0 3 2

2012 2 1 0 1 0 1 0

 64 10 7 3 21 9 6

Year
Fanatic

DISCIPLINE

Productive

PARANOIA

Empirical

CREATIVITY

Level5

AMBITION

2002 10.0 7.3

2003 7.5 7.0

2004 7.0 7.0

2005 9.0 6.0 8.0 8.0

2006 5.3 8.5 10.0

2007 5.0

2008 5.0 9.0 5.0

2009 7.0 7.0 8.0 5.0

2010 8.0 5.5

2011 4.7 7.6 10.0 5.0

2012 6.3 6.3 5.0

 74% 62% 84% 63%

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 28

www.aitp-edsig.org - www.jisar.org

Table 7. Apple Four Practices and Considerations

Year
Acquisitions Infrastructure Personnel Philanthropy Litigation Financial

Recognition/

Presentations

2002 2 4 2 1 1 6 4

2003 0 2 2 2 0 5 3

2004 0 3 2 0 0 4 2

2005 0 2 1 1 0 5 1

2006 0 3 2 0 1 4 1

2007 0 2 2 0 0 4 1

2008 0 5 2 0 0 4 2

2009 0 0 3 0 0 5 1

2010 0 5 2 0 1 4 2

2011 0 0 3 0 1 5 3

2012 0 1 2 0 1 3 2

2 27 23 4 5 49 22

Year
Fanatic

DISCIPLINE

Productive

PARANOIA

Empirical

CREATIVITY

Level5

AMBITION

2002 6.67 7.68 8.93

2003 8.5 8.4 8.7 8.0

2004 6.3 7.1 7.6 7.0

2005 8.4 7.3 7.8 6.0

2006 8.8 8.1 8.5

2007 6.6 7.8 7.8 9.5

2008 8.2 8.8 7.7

2009 8.8 9.2

2010 10.0 9.4 9.6 10.0

2011 10.0 9.8 8.8 5.0

2012 10.0 9.8 9.7

84% 84% 86% 76%

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 29

www.aitp-edsig.org - www.jisar.org

Information Security in Nonprofits: A First Glance

at the State of Security in Two Illinois Regions

Thomas R. Imboden
timboden@siu.edu

Southern Illinois University

Carbondale, IL 62901

Jeremy N. Phillips
Jphillips2@wcupa.edu

West Chester University
West Chester, PA 19383

J.Drew Seib

jseib@murraystate.edu
Murray State University

Murray, KY 42071

Susan R. Fiorentino
sfiorentin@wcupa.edu

West Chester University

West Chester, PA 19383

Abstract

Information security is a hot button topic across all industries and new reports of security incidents and
data breaches is a near daily occurrence. Much is known about recent trends and shortcomings in
information security in the public and private sectors, but relatively little research examines the state
of information security in nonprofit organizations. The underlying missions of nonprofit organizations,
composition of their workforce, and their reliance on grants and donations for revenue generation

streams set nonprofits apart from private business. These facts warrant an examination of information

security of nonprofit organizations separate from private or commercial groups. This paper examines
the state of information security in nonprofit organizations with results obtained by surveying volunteers
or employees at nonprofit groups in two areas of Illinois. A qualitative discussion using observations
gained from direct analysis of the security status of three organizations as part of student service
learning projects is presented as well.

Keywords: Information Security, Nonprofit, Information Technology

mailto:timboden@siu.edu
mailto:Jphillips2@wcupa.edu
mailto:jseib@murraystate.edu
file:///C:/Users/hunsingerds/AppData/Local/Temp/sfiorentin@wcupa.edu

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 30

www.aitp-edsig.org - www.jisar.org

1. INTRODUCTION

Today, organizations thrive on information. Often
the success of an organization depends upon the

quantity and quality of the data collected and
their ability to employ the data as a resource.
Collecting information comes with a cost,
however. As data collection becomes more
prevalent so does the need to protect and secure
this data. To date, researchers have focused
heavily on how for-profit and governmental

organizations use and protect information. To a
large extent, research on how the nonprofit sector
protects information is lacking. This void is
unfortunate considering the size of the nonprofit

sector, the increasing reliance on the nonprofit
sector to deliver services traditionally provided by

governments, and the push within the nonprofit
sector to strategically gather information to
increase organizational capacity. Nonprofits may
be required by law to maintain employee or client
information containing medical data, or other
personally identifiable information such as social
security numbers, credit history, and criminal

background check information. Failure to
maintain the confidentiality of this information
can result in legal liability.

This paper proceeds as follows. First, the authors
survey the literature on nonprofit organizations

and information security. Next, the authors

provide an overview of the research methodology
of the study, an electronic survey of employees at
nonprofits in Illinois and an in person analysis of
technical and operational security protections at
three organizations. Then, the authors present
the results of this mixed methods study. The

results illustrate that there are significant areas
where information security can be improved in
nonprofit organizations. A set of four
nontechnical and operational recommendations
are presented to assist nonprofits in improving
their security posture. Finally, the future goals of
the authors’ work in the area will be shared.

2. BACKGROUND

The need for nonprofit organizations to pay
attention to information security issues is ever
growing. According to Kolb and Abdullah (2009),
the FBI and the Privacy Rights Clearinghouse

report that nonprofit organizations are highly
susceptible to identity theft due to their strong
web presence and use of electronic information.
The rise of technology and use of digital
information can be attributed to the push for
nonprofit organizations to increase their use of

strategic information technology, which includes
making more data driven decisions and using
technology to maximize growth (Hackler &
Saxton, 2007).

Encouraging nonprofit organizations to employ
strategic application of information and
information technology will require nonprofit
organizations to collect more information on
constituents and the public (Kolb & Abdullah,
2009). Additionally, employing technology to

maximize growth means that nonprofit
organizations must use technology for focused
marketing and fundraising, such as donations by
credit card purchases and via direct bank

withdrawals, often over the Internet. All of this
information (personal information, medical

records, credit information, etc.), as well as other
organizational data are typically kept
electronically on network servers and processed
online and require organizations to take proactive
steps to protect the integrity of the data through
strong information security polices (Donohue,
2008).

The push for democratic governance heightens
the need for nonprofit organizations to employ
technology, gather data, and share data. First,
the increase in the privatization movement
means that nonprofits are increasingly taking on

governmental roles (Alessandrini, 2002).

Additionally, there is a push for more networked
forms of governance, where organizations in a
policy domain work together to tackle a particular
issue. This means highly sensitive information will
need to be transferred between organizations
(Kolb & Abdullah, 2009). Finally, nonprofits are

also turning to the idea of e-governance and
accountability through accessible mediums such
as the Internet. Thus, they are relying on
technology as a means of communicating with the
public, increasing the likelihood of exposure of
sensitive data and communications (Smith &
Jamieson, 2006). If the sensitive information

that nonprofit organizations collect is ever

exposed, there may be disastrous effects for the
nonprofit organization including financial loss,
loss of reputation, damage to employee morale,
donor disenchantment and loss, and litigation
(Kolb & Abdullah, 2009).

Carey-Smith et al. (2007) find that many
organizations do not maintain an atmosphere that
is conducive to information security. Many
organizations do not promote strong security
awareness or monitor behavior that could
increase risk. Burns, Davies, and Beynon-Davies

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 31

www.aitp-edsig.org - www.jisar.org

(2006) find that several organizations note a
“lack of time and knowledge” as the greatest
obstacle to employing sound security policies.
They surmise that such barriers may be easily

overcome by providing a strong information
security policy template that organizations can
adopt. Carey-Smith et al. (2007) echo this
sentiment, “[w]here resources are scarce, every
dollar invested in information security can be
perceived as a dollar not spent in direct support
of the organizational mission.” These findings are

also consistent with Imboden et al. (2013) who
find that the size of nonprofit’s budget is the
primary factor predicting whether an organization
has an information security policy. This study

builds on Imboden et al. (2013 and seeks to
better understand to what extent nonprofit

organizations employ effective policies and
practices to protect their organization’s data.

For many organizations, the creation of an
information security policy is a challenge due to
management’s lack of understanding of security
concerns and issues. Often a policy is seen as

unnecessary as minimal technical safeguards
such as antivirus software and firewalls are
erroneously viewed as protecting an organization.
One method for approaching security and
creating an improved security posture for an
organization is to begin with the creation and

adoption of a formal information security policy

(SANS). The information security policy provides
the organization with a set of expectations to be
met regarding information security as well as
outlining consequences for not meeting these
expectations (SANS). The policy requires
compliance and functions as an internal “law” for

the organization. The System Administration,
Networking and Security Institute (SANS), a
leader in information security education and
research, publishes a guide and many examples
of security policy documents that organizations
can freely use to create their own information
security policy documents. This resource may be

useful in guiding an organization through the first

and arguably most cost effective step towards
improving the security for many organizations.

3. RESEARCH METHODOLOGY

This study uses a mixed methods approach to

identify attitudes and practices related to
information security and policies for nonprofit
organizations in two regions of Illinois. The first
part of this study utilizes a survey instrument
administered to nonprofit organizations in the two
regions. The survey provides an overview of how

nonprofits use and handle sensitive information,
as well as a general understanding of the steps
that nonprofit organizations take to adopt formal
polices to deal with sensitive information. The

second part of the study conducts an in-depth
security analysis of three nonprofit organizations
identified from the original survey. The purpose
of the security analysis is two-fold. First, the in-
depth analysis provides support for the results
obtained from the survey. Second, and more
importantly, the security analysis provides

detailed information regarding the security
practices of nonprofit organizations that cannot
be obtained through a survey. Additionally, this
qualitative approach provides the participant

group with tangible and actionable
recommendations to improve information

security.

For initial data collection, the authors developed
a survey consisting of 39 open and closed ended
questions hosted on a web site for participants to
complete electronically. Prospective respondents
were identified from publicly accessible databases

of nonprofit organizations; however, their
participation was anonymous. Participants for this
study were solicited via email. Two specific areas
were targeted: the Chicago metropolitan region
and southern Illinois. While the Chicago region
consisted of a primarily urban and suburban

population, the southern Illinois region

encompassed rural areas in addition to the
predominantly suburban Illinois area of
metropolitan St. Louis, Missouri. During the
approximately one month survey response
period, 154 surveys were started by prospective
participants, of which 78 were completed.

The survey instrument was designed to gather
data on the composition of information
technology and security hardware and software,
resources available to the nonprofit, general
group demographic and employee makeup of the
organization, employee attitude and experience

regarding information security, and the types of

potentially sensitive or personally identifiable
data their organization stores or processes on
their information systems.

A small group of nonprofits located within the
local area of one researcher were identified and

solicited for participation in the analysis of
technical and operational information security
policies and protections. Participants were asked
to complete the existing information security
survey (but not included in the results of the
previous portion), provide the researchers copies

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 32

www.aitp-edsig.org - www.jisar.org

of any organizational policies or similar
documents that referenced information security
or related topics, and allow the researchers to
access the organization’s technology assets to

perform a basic security evaluation of the
hardware, software, and operational activities of
the organization. Students from a volunteerism-
focused, student organization from one author’s
school with an interest or work experience in
information security were identified as research
assistants and assisted in the organizational

analysis. As motivation for the nonprofits’
participation, the student volunteers and the
authors agreed to document any security
concerns or inadequacies discovered at the

nonprofits and, if desired, assist with remediation
of potential problems.

In addition to the completion of the original
survey by administrators at the local nonprofits,
a second list of technical and operational security
questions were developed from industry and
governmental best practice documents. These
questions aimed to determine whether common

security best practices were followed at the
organizations. As an example, the questions
were designed to elicit data regarding, but not
limited to, the following:
 Does the organization have a formal

information security policy and are members

aware of its existence?

 Are common information security protections
such as antivirus, firewalls, and operating
system and third party software updates
implemented and kept current?

 Has the organization experienced incidents
that presented potential risks to information

security?
 What does the nonprofit view as potential

risks from poor information security?

Finally, a follow up survey was sent to the
organizations that provided documents that
governed organizational procedures or activities

related to information security. The survey was

designed to discover employee knowledge of and
adherence to the provisions of the adopted policy.
These surveys were administered to staff and
volunteers of the respective organization.

4. RESULTS

When examining the data as a whole, we see the
organizations in the sample are very diverse,
ranging from operations comprised of no full time
employees and no formal information security

budget to organizations that devoted a
substantial amount of formal resources to
information security. Table 1 provides average
demographic data on organizations that took part

in the electronic survey. As noted in the table, on
average, organizations dedicated more than
$23,000 dollars to information technology and
security and nearly half of the organizations
stated they had an employee with formal
responsibilities devoted to overseeing information
security in the organization.

Characteristic Mean

Budget $1,331,352

IT budget $23,408

Number of employees 19.5

Employees dedicated to IT 46.80%

Table 1 - Size of Nonprofits

Table 2 illustrates the types of personally
identifiable information that nonprofit

organizations collect. Nearly all organizations
collect some type of personal information, with
20-30% of organizations collecting what can be
considered sensitive information that could be
costly for both the organization and constituents
if the information were compromised.

Type of Data

Names 97.80%

Addresses 94.70%

Phone Numbers 89.50%

Birth Dates 53.70%

Social Security Numbers 31.60%

Health Records 20.80%

Criminal Records 11.50%

Income 27.40%

Table 2 - Types of Data Handled

Given that nonprofit organizations are collecting

sensitive information, do they take appropriate
steps to protect the information? The authors
define “appropriate steps to avoid loss of
sensitive information” to mean organizations

adopting a formal information security policy that
meets the security needs of the organization as
well as utilizing programs and procedures, such
as antivirus programs and ensuring that such
programs are up-to-date, to mitigate information
loss. While these are certainly not the only steps
required to protect sensitive data and information

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 33

www.aitp-edsig.org - www.jisar.org

systems, the authors believe it a foundation for
security to be built upon.

Table 3 details the percentages of organizations
in the sample that have a formal policy that

governs information security. Additionally, this
table provides information on the origin of such
policies.

Have formal security policy 56%

Developed by employees 39%

Developed by board of directors 33%

Template found online 30%

Created by legal counsel 27%

Provided by parent organization 13%

Provided by another organization 12%

Provided by insurance company 6%

Combination of the above sources 44%

Table 3 - Nonprofit Adoption and
Development of Information Security

Policies

 As noted in Table 3, 56% of organizations in the

sample had a formal policy governing the use of
information technology and security. Of the
organizations identified as having a formal
information security policy, the origins of such
polices are derived from a variety of places. For
example, 30% of organizations with information
security polices constructed it from a template

found online. Very encouraging is that 44% of
organizations with information security policies
used two or more sources to develop their
information security policy. This suggests that
nearly half of nonprofit organizations are thinking
broadly when developing their policies. For
example, an organization may initially acquire an

information security policy from a template, but

then consult employees, legal counsel, and/or
their board of directors to tailor the policy to fit
the needs of the organization.
Also promising is that nonprofit organizations
communicate their information security polices to

employees and require employees to
acknowledge the content of such policies. As
detailed in Table 4, 84% of nonprofit
organizations with policies formally require their
employees to acknowledge policies that govern
technology use. What is more, Table 5 illustrates
that nonprofit organizations are institutionalizing

their technology polices through employee
training and inclusion in the organization’s
employee handbook. A combined 65% of
nonprofit organizations hold group or individual

trainings, 58% distribute the policy to their
employees, and 69% include the policy in their
employee handbook.

Required to acknowledged policy 84%

Not required to acknowledge policy 16%

Table 4 - Formal Employee
Acknowledgement of Security Policy

Group training sessions 33%

Individual training sessions 32%

Distributed by paper 29%

Distributed electronically 29%

In the employee handbook 69%

Table 5 - How Nonprofits Communicate the
Security Policy

In addition to adopting polices to help mitigate
threats to security, some nonprofit organizations
are also employing appropriate security
technologies to help reduce risk. Table 6 provides

information on the types of technologies used by
nonprofit organizations including antivirus

programs, firewalls, and blocking of unauthorized
websites and downloads. A large portion of
organizations protect all computers in the
organization. The data reveal that 80% of
organizations have antivirus programs installed

on all computers owned by the organization.
Additionally, 61% of organizations stated they
have firewall programs. There are still a large
percent of organizations that are not universally
protecting their infrastructure. Less used are web
blocking programs that restrict employees from

visiting potentially dangerous or prohibited
websites.

While nonprofit organizations are using
appropriate technologies, our data shows that

these organizations are ignoring another risk by
not automatically updating software. Recently,

malicious attacks have targeted out-of-date
versions of operating systems as well as third
party applications such as Java, Adobe Reader,
and Adobe Flash (Kaspersky Lab, 2012). Table 7
shows that less than half the organizations in the
sample use automatic settings to update
operating systems and programs.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 34

www.aitp-edsig.org - www.jisar.org

 Antivirus

Firewall
Web
Block

All computers 80% 61% 23%

Some
computers 11% 17% 34%

No computers 4% 10% 30%

Unsure 5% 12% 13%

Table 6 - The Use of Antivirus, Firewall, and
Web Blocking Programs

Automatic checks 48%

Manual checks 24%

Systems are not checked 17%

Unsure 11%

Table 7 - Maintenance of Operating
Systems and Software

Employing information security polices and
technologies to reduce organizational risk appear
to be born out of real and perceived risk. Table 8
highlights the percentage of organizations in the
sample that have experienced specific threats to
information security. 43% of the sample notes

that they have experienced issues with a virus,
spyware, or malware. Roughly a quarter of the
sample reports hardware or software
malfunctions. And 14% of the sample notes

human error leading to an issue with security.

Virus, spyware, and/or
malware 43%

Data theft 3%

Hardware theft 10%

Hardware failure 29%

Software failure 24%

Website defacement 3%

Employee error 14%

Employee misuse/vandalism 3%

Table 8: Types of Incidents That Have
Occurred

Table 9 suggests that nonprofit organizations are
aware of the potential risks of an information
breech. In addition to concerns affecting
organizational efficiency and effectiveness such

as data loss or productivity, organizations are
also aware of threats to the organization’s
reputation and potential legal action that may
come for an information breach.

Data loss 80%

Loss of productivity 60%

Hardware damage 32%

Identity theft 33%

General decrease in company
security level 31%

Loss of reputation 48%

Legal action 30%

Table 9 - Perceived Consequences of an
Information Breach

Security Analysis of Selected Groups

Of the groups solicited for a more in-depth look

at their information security policy, employee
attitude towards security, and security status,
three within one author’s locality volunteered for
additional focus and participation. Organization 1
(ORG1) is focused on victim advocacy and
recovery. Organization 2 (ORG2) serves children
in an educational capacity. Finally, Organization

3 (ORG3) serves the community with arts
programming. One author has worked with each
organization directly and with the support of
student volunteers during the course of this
project. For each of the three organizations, the
administrators responsible for decisions

regarding technology or information security
were asked to complete the original electronic

survey in paper format.

Analysis of Organization 1
The first nonprofit organization studied was found
to have an information security posture that given

the size, mission, and resources dedicated to
information technology, impressed the authors.
ORG1’s information security practices were
deemed strongest of the three nonprofits
analyzed. ORG1 employed nearly seventy staff
and volunteers, had a budget of over $1.25
million, and served over one thousand clients

during the past year. They reported a dedicated
information technology budget of $8,700 and
owned approximately thirty desktop and three

laptop computers.

A formal interview with ORG1 administrative

respondents illustrated a wealth of useful data
regarding the state of information security at
their nonprofit. An in-person observation and
evaluation of their procedures and information
systems proved to be even more illustrative of the
link between policy, accountability, and the
security posture of the organization.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 35

www.aitp-edsig.org - www.jisar.org

While ORG1 did not employ any staff with
information technology or security background or
training, the authors believe that the assignment
of technical and security responsibilities to one of

the administrative staff served to directly
influence the security posture of the
organization’s information systems and assets.
This nonprofit had the highest number of
technology assets, staff and volunteers, and
annual operating budget. As illustrated below,
the authors believe this employee’s

implementation of several non-technical and
basic security protections was the key factor in
increasing the security status of the nonprofit. As
an example, a “cheat sheet” on safe computing

practices is found next to each computer and
serves as a reminder to be cautious and vigilant

when using the PCs. While room for improvement
exists, the organization was found to be
performing more of the most common security
tasks and best practices, despite the relative size
and number of assets, than the other two
organizations. More on the steps taken by this
employee will be discussed at the end of this

section.

ORG1’s policy regarding the acceptable use of
computing resources was approved six months
prior to the authors’ examination of the
document. As an example, it referenced

employee password standards, prohibited the use

of personal email for official business, and
outlined enforcement and consequences of
breaking the policy. Employees were surveyed
regarding the policy and its integration into the
organization and its culture. These questions
sought to determine the following:

1. Are employees aware of the existence

of the information security policy?
2. How is the information security policy

communicated to employees?
3. Are employees asked to acknowledge

their receipt and adherence to the

organization’s security policy?

4. Have employees received information
security training at their current or
previous employers?

The results of the employee survey of the above
questions are shown in Table 10. Eighteen

employees that routinely used computers and
technology were solicited for participated in this
survey. Nearly 90% of those surveyed were
aware of the existence of an information security
policy, while only 16% reported being asked to
acknowledge the policy either written or verbally.

Have Policy Yes No Unsure

 16 1 1

Communicated Email Meeting Paper
Copy

 1 5 12

Acknowledged Yes No Unsure

 3 12 3

Security

Training

Yes No

3 15

Table 10 - ORG1 Employee Security Policy
Survey

The nonprofit serves victims of crime, and is

mandated by state law to protect the privacy of
their clients. As is likely the case with
administrators in many nonprofits, one individual
“wore many hats”, and supporting and
administering technology and security was one

secondary duty assigned to them. In certain
circumstances, inappropriate or unauthorized
disclosure could lead to misdemeanor criminal
charges. While the administrator possesses no
formal background in security or information
technology, they took it upon themselves to learn
about and take steps to improve the security at

the organization by ensuring employees were
aware of a few basic activities to protect their
computer use and actions.

Student volunteers were also given permission to
examine the desktop and laptop computers at
ORG1 in order to assess the status of several

common applications and operating system
settings that affect the system’s security and, in-
turn, organization security. Specifically, students
observed and assessed the following:

 Operating system version

 Status of operating system updates
and patches

 Status of antivirus application and
associated definitions

 Status and version of Java
 Status and version of Adobe Reader

 Status and version of Adobe Flash

 Screensaver lock and idle delay
 Status of operating system firewall
 Account permissions given to users

The complete results of this analysis will be
presented in future work, but an overview found

a few common themes.
 Older systems that were performing

slowly were more likely to be missing

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 36

www.aitp-edsig.org - www.jisar.org

operating system updates and running
out of date third party applications.

 While the security policy required use of
time delayed screensaver locks, a

majority of the systems did not
implement them.

 Overall, systems were running recent
versions of third party applications with
few exceptions.

 Surge protectors were supplied and
used for most workstations.

 Antivirus software was running,
updated, and virus scans ran regularly.

 Most computers contained files in their
My Documents folder that their users

were responsible for backing up. The
type or importance of these files was

not examined.
 A majority of the user accounts logged

in when students performed their
security analysis were operating with
full administrative privilege.

Analysis of Organization 2

The second organization (ORG2) was
substantially smaller than ORG1 in terms of the
number of employees, budget, and clients
served. The annual budget was reported at
$650,000, of which none was allocated for
information technology and security.

Approximately twenty-five employees and

volunteers worked with the nonprofit over the last
year. Of these, three are considered managers
with the power to make decisions regarding
information technology; however, technology
purchases must be approved by board members.

ORG2 reported that an information security policy
did not exist. They reported a lack of expertise as
well as a lack of an industry or legal requirement
as factors contributing to lack of a policy. The
managers acknowledged storing or processing
potentially personally identifiable information on
their systems.

ORG2 owns two desktop computers, which are
primarily used by the management staff to keep
track of financial information, communicate with
clients, and to create operational paperwork. It
was originally observed that of the two computer
systems, one was completely nonfunctional and

had been for months, creating a burden on the
organization. During the course of discussion
with this group, the second PC suffered a
hardware malfunction, rendering the organization
unable to perform several regularly required
operational duties via their standard procedures.

It was found that data, including some which was
critical to the groups operation, had not been
recently backed up on either of the two failing
computers. A volunteer was solicited by the

organization to assist and two replacement PCs
were purchased, configured, and installed. A data
recovery firm was contracted to restore the data
lost during the system hardware failures. It was
also noted that other instances of virus infection,
hardware failure, and software or data corruption
had previously affected the nonprofit. No

employee was responsible for information
technology and security at ORG2. Antivirus
software and firewalls were running on the
computers, but operating system and third party

applications were out of date and not routinely
updated. The organization was also unaware that

their Internet router created an unneeded and
unused wireless network access point.

Analysis of Organization 3
The smallest organization in terms of budget was
ORG3. They reported an annual budget of
$25,000, of which none was allocated for

information technology and security. ORG3 is
unique in that while only employing one paid staff
member, approximately 120 volunteers
supported the organization and made use of the
four desktop computers used by ORG3 to help
serve the community and fulfill the group’s

community arts mission. Like ORG2, it was

reported that a security policy did not exist and
that a lack of perceived need and lack of expertise
required to create one was behind this fact.
Again, like ORG2, it was reported that a recent
incident caused by employee misuse resulted in
the loss of mission critical donor related files from

a storage device. Recreating the files took over
forty hours of volunteer time. Unlike ORG2, it
was reported that antivirus software was not used
but common third party applications and
operating system updates were regularly checked
and maintained. Personally identifiable
information for volunteers and donors is stored or

processed on ORG3’s computers.

Common Themes from Direct Organization
Observations
There were several common characteristics or
shared themes found across the nonprofits. All
three organizations reported loss of data due to

hardware or software failure, employee misuses
or error, or similar circumstances. In two cases,
it was reported that the missing data had been
backed up at one time, but when attempting to
recover the data from backup copies, they were
found to be too old to be useful or corrupt. In one

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 37

www.aitp-edsig.org - www.jisar.org

circumstance one group paid a specialized data
recovery firm $500 to recover data critical to the
organization. In a second case, a volunteer had
to recreate customized files crucial to donor and

underwriting activities taking over forty hours to
do so.

A second common theme was the lack of a
dedicated information technology support staff
member or even consultant who regularly
provided guidance and assisted with maintenance

of information systems. All the organizations
reported having at times paid for help from local
technology businesses as needed, often only
when an emergency need arose. Contrasting this

with the need to regularly perform software
updates and other types of routine maintenance

to improve security, it was expected that these
tasks were neglected, putting individual and
organization wide systems at higher risk. As
ORG2 and ORG3 reported no budget funds
allocated for information technology, it would
stand to reason that paying outside help to fix
technology issues would be a last resort.

Secondly, given the need for nonprofits to rely on
volunteers, it was found that each group relied on
the information technology help and skills of
volunteers trained in or working in IT positions.

Another common theme that is evident, given the

examples of data loss and hardware failure, is the

lack of redundancy in business critical hardware
and applications, and the absence of regular and
reliable backup technologies and processes.

Lessons Learned
Several key actions or themes that were believed

to contribute significantly to the positive security
stance of an organization were identified.

1. Have an Information Security
Champion – Identify a single employee

who can be charged with leading the

effort for improved security.
Understanding and implementing even
the most basic security practices such
as maintaining operating system and
third party application updates will help
decrease incidents.

2. Create a Policy - A basic policy
addressing information security will help
employees understand that information
security is important to the organization
and will provide a level of expectation
regarding their use of technology.

3. Train and Talk – While it is
unreasonable to expect volunteers and
employees to become security experts,
several basic tasks and activities can

contribute to improving security. A
regular discussion, whether in the form
of formal meetings or as an informal
email reminder of security tips, serves
to open dialogue on the subject and
keep it fresh in their minds.

4. Develop Organization Specific

Materials – Create posters reminding
users to think before they click and
provide security checklists such as a
“Do’s and Don’ts” for safe computing to

keep next to computers. This can serve
as yet another illustration that the

organization is concerned with security.

5. FUTURE WORK

The information presented in this paper is simply
a first glance at the state of information security
in nonprofit organizations. The authors intend to

increase data collection efforts to expand to
diverse regions across the United States. Results
from a larger population will help to determine
even further where deficiencies in information
security practices and policies exist and provide
researchers with a foundation for the

development of resources that may help

nonprofits. Those with minimal resources and
expertise in information technology and security
certainly could use help to improve their security
posture and use their technology safely and
efficiently.

6. REFERENCES

Alessandrini, M. (2002, October) A fourth sector:

The impact of neoliberalism on non-profit
organizations. Paper presented to
Australasian Political Science Association
Jubilee Conference, Canberra, Australia.

Burns, A., Davies, A., & Beynon-Davies, P. (2006,
November) A study of the uptake of
information security policies in small and
medium sized businesses in Wales. Paper
presented at Global Conference on Emergent
Business Phenomena in the Digital Economy,

Tampere, Finland.

Carey-Smith, M., Nelson, K., & May, L. (2007).

Improving information security management
in nonprofit organizations with action.
Proceedings of 5th Australian Information

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 38

www.aitp-edsig.org - www.jisar.org

Security Management Conference (pp. 38-
46), Perth, Australia: School of Computer and
Information Science Edith Cowan University

Denhardt, J. V., & Denhardt, R. B. (2011). The
new public service: Serving, not steering.
New York: ME Sharpe.

Donohue, M. (2008) States push to encrypt

personal data. The Nonprofit Times.
Retrieved from

http://www.thenonprofittimes.com/news-
articles/states-push-to-encrypt-personal-
data/.

Hackler, D., & Saxton, G. D. (2007). The strategic
use of information technology by nonprofit

organizations: Increasing capacity and
untapped potential. Public Administration
Review, 67(3):474–487.

Hrywna, M. (2007). Nonprofits and data

breaches. The Nonprofit Times. Retrieved
from

http://www.thenonprofittimes.com/news-
articles/nonprofits-and-data-breaches/.

Imboden, T. R., Phillips, J. N., Seib, J. D., &
Fiorentino, S. R. (2013). How are nonprofit
organizations influences to create and adopt
information security policies? Issues in

Information Systems, 14(2): 166-173.

Kaspersky Lab. (2012). Oracle Java surpasses

Adobe Reader as the most frequently
exploited software. Kaspersky Lab Corporate
News. Retrieved from
http://www.kaspersky.com/about/news/viru

s/2012/Oracle_Java_surpasses_Adobe_Rear
er_as_the_most_frequently_exploited_softw
are.

Kolb, N., & Abdullah, F. (2009). Developing an
information security awareness program for a

non-profit organization. International
Management Review, 5(2):103–108.

SANS. SANS Security policy project. Retrieved

from http://www.sans.org/security-
resources/policies/.

Smith, S. and Jamieson, R. (2006). Determining
key factors in e-government information
system security. Information Systems
Management, 23(2):23–32.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 39

www.aitp-edsig.org - www.jisar.org

A Comparison of Software Testing Using the

Object-Oriented Paradigm and Traditional Testing

Jamie S. Gordon
jamie.s.gordon@unf.edu

Robert F. Roggio
broggio@unf.edu

School of Computing, University of North Florida

Jacksonville, FL 32224 United States

Abstract

Software testing is an important part of any software development. With the emphasis on developing
systems using modern object oriented technologies, a critically-sensitive issue arises in the area of
testing. While traditional testing is reasonably well understood, object oriented testing presents a host
of new challenges. This paper focuses on what differentiates the two in test cases, testing levels, and

OO features affecting testing.

Keywords: Object-oriented testing, traditional testing, testing levels

1. INTRODUCTION

Object-oriented testing is based not only on both
the input and output of an object’s methods, but
also how that input and output may influence the
object’s state. Many of the positive features
touted by object-oriented languages can map
directly into increases in testing complexity.

While the many beneficial features of the object-
oriented paradigm are important, the increases in
program complexity (sometimes in unintended
and unseen ways) often negatively impacts

testing in terms of effort and time.

Traditional testing involves the viewing of input

and output of a program in a procedural manner.
Both types of testing still involve tried and true
testing types. In fact, many of the differences
show up in white-box testing because the two
types of programming can often solve the same
problems using the same input and output.

This paper seeks to determine how testing is
different in an object-oriented paradigm versus

that of a traditional (procedural) program.

2. LITERATURE REVIEW

Research done on object oriented testing has
changed over the years. Many early papers

written on the subject lamented the inability of
researchers to address the differences between
object-oriented programs and procedural testing.
As Turner and Robson pointed out, “the vast

majority of research conducted into the testing of
object-oriented programs fails to address the
difference between the object-oriented and more

traditional programming techniques,” (Turner &
Robson, 1993).

At around that same time, Hayes wrote a paper
identifying some aspects of object-oriented
programs and how that may affect systems
(Hayes, 1994). The paper also described a

testing methodology that the author believed

file:///C:/Users/hunsingerds/AppData/Desktop/AppData/Local/Temp/Temp1_RE%253a_paper.__Version_2.zip/A%20Comparison%20Pt.%206.18.doc
file:///C:/Users/hunsingerds/AppData/Desktop/AppData/Local/Temp/Temp1_RE%253a_paper.__Version_2.zip/A%20Comparison%20Pt.%206.18.doc
mailto:broggio@unf.edu
mailto:broggio@unf.edu

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 40

www.aitp-edsig.org - www.jisar.org

should be recommended for OO-programs.
Hayes was successful at identifying the problems
involved with inheritance, but did not discuss
many other issues in much depth, such as

polymorphism and dynamic binding. This was a
problem with many early papers on the subject,
which primarily focused on objects’ states and
inheritance. It became increasingly evident that
many more features of object-oriented
programming need to be considered for testing by
looking at more recent papers, such as that of

Jain, “Testing Polymorphism in Object-Oriented
Programming,” which described how advanced
polymorphism makes it difficult to understand all
the possible interactions among classes (Jain,

2008).

Gu, et al., wrote a paper detailing three processes
to select test data and for evaluating the coverage
of those tests. They were the flow-graph-based
approach, graph-based class testing, and the
ASTOOT approach, which used algebraic
specification to determine test cases. These
methods derive test data, for example the flow-

graph-based process uses the flow of control from
method to method to model test data while the
graph-based process models transitions between
different states of an object. These focused on
program flow and state changes and ignored
other features of OO as well. The authors also

discussed how the testing of object-oriented

programs must differ from traditional testing
methods (Gu, et al., 1994).

By 1996, there was already enough literature for
Johnson to report on the different testing levels
and techniques proposed by researchers

(Johnson, 1996). However, there was not much
of a consensus at that point for a standardized
system of testing. For example, there was a
disagreement on unit-testing, in that some
authors disagree that it should be involved in
object-oriented testing at all.

As time went on, the differences between object-

oriented and traditional (procedural) testing
became more evident. For example Khatri, et al.,
described many features – encapsulation,
inheritance, polymorphism, etc. – of object-
oriented programming and how they made it
more difficult to decide how test should be done

(see Object-Oriented Features that Affect Testing
below) (Khatri, et al., 2011). However, that
paper did not describe in detail how testing should
be done. Bhadauria described the same features,
but also gave a sequence of testing levels and
what kinds of tests should be run in each

(Bhadauria, 2011). Some authors described
design metrics that may help programmers
determine beforehand how difficult to test their
design may be (Badri, 2012). This sort of

empirical view of object-oriented testing is
another useful area of study. Authors have
discussed both new and older metrics for
measuring testability, and which are the most
valuable to object-oriented programming
(Yeresime, et al., 2012).

3. BACKGROUND: OBJECTIVES OF

TRADITIONAL AND OBJECT-ORIENTED
TESTING

There are many people with vested interests in
the testing process, including programmers,
testers, program managers, and end-users.
These people are some of the stakeholders in the

system, those that are impacted by the system or
influenced by its behavior. Individuals or groups
of individuals acting in these roles are those who
depend on testing to show the systems performs
as intended. The major objective in testing is to
discover as many faults, errors, and defects as

possible with minimum effort and cost (Khatri,
Chillar, and Sangwan, 2012). According to
Johnson (Johnson, 1996), “Testing is the process
of executing a program with the intent to yield

measurable errors.” Testing is not about showing
that there are no errors – effective testing comes
from creating effective test cases that can coerce

out errors and failures (Naik & Tripathy, 2013).
This can help designers find 'defects' (term
attributed to design) and programmers find
'faults' (term normally attributed to
programming). Given this backdrop, however,
what constitutes an effective test is quite different
when contrasting traditional (procedural) testing

and object-oriented testing (Dechang, Zhong, &
Ali, 1994)

4. TEST ADEQUACY AXIOMS

Elaine Weyuker defined eleven axioms to

determine the adequacy of a test set (Hayes,
1994). Some are less interesting as they apply
equally to both testing paradigms, such as the
applicability axiom (Every program has an
adequate test set), the monotonicity axiom (It is
possible to create a set of test cases that is larger
than is necessary), the renaming axiom (If P is

simply a renaming of Q, and T is adequate for Q,
then T is adequate for P), or the non-exhaustive
applicability (Program P is adequately tested by
T, where T is a non-exhaustive test set). Below

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 41

www.aitp-edsig.org - www.jisar.org

is a list of the axioms to consider when discussing
the difference between traditional and object-
oriented testing. (Table 1)

Axiom Description Traditional Object-Oriented

Complexity For all n, there is a
program that is
adequately tested by a
test set of size n, but
not by a test set of size
n-1

There is a minimum
set of inputs that
must be tested

There is a minimum set of
inputs and object states that
must be tested

Anti-
extensionality

There are programs P
and Q that compute the

same functions
(semantically similar),
where T is adequate for
P but not for Q

It cannot be assumed
that the same test

cases can be used for
different programs
that accomplish the
same things

It cannot be assumed that
the same test cases can be

used for functionally similar
programs, this can be
extended to mean that just
because one state is correct

for one program, that does
not mean that is correct for a
similar program

General
Multiple

Change

There are programs P
and Q that are

syntactically similar,
where T is adequate for
P but not for Q

Syntax does not tell
you what needs to be

tested

The syntax of two programs
does not determine the test

sets, this also means that if
two programs use the same
classes, the test cases should
be different because the
messages sent between them
may be different

Anti-
decompositio
n

There is a program P
and component C where
T is adequate for P and
T’ is the subset of T that
can be used for Q, but T’
is not adequate for Q.

A component of a
program (say a
method) can be
adequately tested for
use within one
program, but not

necessarily on its
own.

“When a new subclass is
added (or an existing
subclass is modified) all the
methods inherited from each
of its ancestor super classes
must be retested.”

Anti-
composition

There exist programs P
and Q and a test set T
where T is adequate for
P and the subset of T

that can be used for Q is
adequate for Q, but T is
not valid for P;Q (the
composition of P and Q).

Two programs (or
methods) can be
adequately tested on
their own, but once

combined or used in
another class; they
may no longer be
adequately tested.

“If only one module of a
program is changed, it seems
intuitive that testing should
be able to be limited to just

the modified unit. However,
[this] states that every
dependent unit must be
retested as well.”

Table 1 Test Adequacy Axioms (Hayes, 1995)

5. TEST CASES

Traditional Test Cases
Test cases are often based on the traditional
model of processing. The traditional Von-

Neumann model of processing is in Figure 1.

Figure 1 Von-Neumann Model of Processing

(Labiche, Tosse, Waeselynck, & Durand, 2000)

This model works well for the procedural
paradigm where the input dictates what the

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 42

www.aitp-edsig.org - www.jisar.org

output of a program is. In accordance with this
model, a test case ignores the processing aspect
and focuses on input and output. One may thus
view a test case as an ordered pair: <input,

expected output> (Naik & Tripathy, 2008). This
can be done because the processing is only
dependent on the input into the application, as
there is no program 'state' to consider,
necessarily.

The expected output of a system would normally

be described as either values produced by the
program or messages to the user based on the
input (Naik & Tripathy, 2008). The rationale
behind this assertion is justifiable, as the output

is program-generated and defined structurally
rather than behaviorally (Johnson, 1996). This

also implies test cases may be derived from static
analysis for dynamic testing (discussed ahead).

Object-Oriented Test Cases
Test cases in the object-oriented paradigm are
more complex. The traditional testing model is
insufficient, because objects in a program have

their own states which may well be impacted by
the processing of input parameters (Turner &
Robson, 1993). In addition, these state changes
may not at all be evident from the output of a
program. For example, consider a program that
has objects of this class:

Student

-name: String
-grades: int[]…

+addGrade(int grade): void
+sortedGrades(): int[]…

Figure 2 Student Class Examples

In this example, only the important methods are
listed. Suppose a test case is developed for
sortedGrades(), where sortedGrades() is

supposed to sort the grades array and then return

the sorted values. Consider the following test
case:

<add grades: (100, 50, 75),
expected output of sortedGrades(): 50, 75,

100>

Figure 3 Test Case with Output Results

These tests might pass with the traditional test
model. However, without examining the state of

the Student object, it is unknown whether the

grades array has actually been altered, or if the
sortedGrades() method simply returns a sorted
array of integers without actually altering the
grades array. The method sortedGrades() is

designed to return the grades[] array as a sorted
list without affecting the grades[] array itself.
The reason for this is so that the user may specify
in the interface that they want grades in
ascending order by percentage. However, they
may also want the grades in the order that they
were entered, so it is important to preserve the

original state. This means that not only should the
expected output of the method be tested, but the
expected state of the class should also be
included in the test case. (Figure 4)

<add grades: (100, 50,75),
expected output of sortedGrades(): 50, 75,
100},
expected state of grades[]: {50, 75, 100}>

Figure 4 Test Case with Output and State

Due to this trait of the object-oriented model, the
Von-Neumann model needs to be changed to
accommodate the state of the objects involved in
processing. Robson and Turner suggest the
following adaption (Figure 5):

Figure 5 Von Neumann Model with Added State

Changes (Turner and Robson, 1993)

Indeed, Dechang, et al., 1994 agree that an
effective test case involves both the changing
class state and the sequence of operations. The
object-oriented paradigm is based on objects as
instances of classes; therefore programming is
inherently state-based. Not only that, but an

object’s internal values are not the only thing to
consider when developing test cases. The
associations between objects through method
calls, inheritance, polymorphism, etc. make

object-oriented test case generation much more
complex (Johnson, 1996) (discussed ahead). For

now, it is important to note that there is no strict
input-process-output correspondence in object-
oriented programming. For more advanced
testing, where a method chain is involved for
example, it is recommended that a few more
items are inserted into the test case: (1) a list of
messages and operations that either will or may

be executed by the test, (2) any exceptions that
may or are expected to occur, and (3) any

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 43

www.aitp-edsig.org - www.jisar.org

environmental setup external to the program
(Bhaudaria, et al., 2012). This is in addition to
any supplementary information deemed
necessary.

6. TESTING LEVELS

There are many between object-oriented testing
levels and traditional testing levels. While object-
oriented programming provides functionality not
afforded by procedural programming paradigm –

such as data encapsulation and reuse of objects
– the ease of writing object-oriented programs
does not translate to testing. In fact, many
researchers have observed that testing programs

written in an object-oriented language increases
the effort required for adequate testing (Jain,

2008). In this section, four levels of testing are
described. Typically, in traditional testing, there
is unit and system testing. With object-oriented
testing it is necessary to include two new levels,
class testing and integration testing.

Unit Testing
Unit testing can be used in both object-oriented
and traditional testing. Methods and routines are

tested independently of each other in unit testing
(Johnson, 1996). The defects or faults of other
classes and functions should not impact unit
testing (Roggio & Gordon, 2013). In traditional

testing, tests can be made by defining inputs and
observing to see if the output of a method or set

of methods matches the expected outputs of the
function. These functions or methods need to be
independent units, units which do not call other
methods or use common global data (Hayes,
1994). However, in object-oriented unit testing,
the method cannot interact with other classes or
be dependent on its class’s methods. Testing

individual methods is significantly more difficult.
In fact, some authors state that unit testing
cannot be deduced from one object’s operations
because (when isolated) one may not see the
object's relations to other methods, the class’s
state, and other classes (Labiche, et al., 2000).
Instead, it is suggested that unit testing be

combined with integration testing (Hayes, 1993).

To actually accomplish unit testing on individual
methods, several additional items must be
tracked. The first is any attributes of the class
that may be changed by calling the method. The

second is that other methods in the class called
by a particular method are determined to be
correct. The third is that objects of other classes
used by the method must be first tested and
determined to be correct. This means that the

testing levels are not in a linear order, and have
to be determined from a different method. There
are many different ways of determining levels
such as the flow-graph-based and graph-based

techniques mentioned earlier (Dechang, et al,
1994).

Another way of dealing with dependencies when
trying to unit test is simulating the dependent
classes. This is an extension of a testing
technique known as writing drivers or stubs.

Traditionally, drivers and stubs were written as
“dummy” methods for dependent methods. In
object-oriented testing, this is extended to entire
classes. A driver is written when a class is

dependent on another for data to process. A
driver is usually used with a lower layer in a

hierarchical development model. A stub is a
method written that is handed data to process
when the module that processes data has not
been written yet, or when the module that has
been written has not been tested. Stubs are often
written when testing higher classes in a
hierarchical design.

Class Testing
This version of testing involves testing methods
as they relate to and interact with one another.
Of course, because this is “class testing,” it is only
involved in object-oriented testing (Johnson,

1996). Some authors consider this to be object-

oriented testing’s version of unit testing
(Johnson, 1996) (Labiche, et al., 2000). The
reasoning behind this is that testing a class’s
methods in isolation, without any relation to other
methods, is not actually useful for any nontrivial
task. Methods are meant to interact. In any

event, the purpose of class testing is to test how
a single class’s methods interact with one
another. Again, this means that any classes
referred to by an object’s methods need to be
tested thoroughly beforehand, or the dependent
classes need to be simulated in some way.

Cluster Testing
Cluster testing involves extending class testing to
verify that a group (cluster) of cooperating
classes interacts correctly. According to Johnson,
(Johnson, 1996), a cluster of classes is a group of
classes that are dependent and cooperate with

one another directly. Traditional testing does not
appear to have a clear comparison. In order to
do this, the cooperating classes must have
previously been tested individually, through class
and unit testing if possible. (See next paragraph)

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 44

www.aitp-edsig.org - www.jisar.org

Integration & System Testing
In traditional testing, integration testing tests
methods together. This will include methods that
are dependent on other methods or dependent on

common global data (Hayes, 1994). For object-
oriented programming, integration testing is an
extension to cluster testing. In integration
testing, the testing is extended to the system as
a whole. The clusters are combined into the total
system, which is then tested as a whole, with all
the dependencies intact. Another, more

specialized, case of integration testing is system
testing which is running the whole system based
on normal customer usage scenarios as close to
the customer's environment as possible

(Johnson, 1996).

7. OBJECT-ORIENTED FEATURES THAT

AFFECT TESTING

There are many positive features of object-
oriented programming, and although they make
the paradigm very effective, these features make
it more difficult to test. The seven factors
described below have been mentioned by
different authors as factors that affect the amount

of effort needed for adequate testing (Khatri,
Chillar, & Sangwan, 2011) (Badri & Toure, 2012)
(Jain, 2008) (Yeresime, Jayadeep, & Ku, 2008).
The seven factors are encapsulation, inheritance,

polymorphism, cohesion, coupling, dynamic
binding, and abstraction. As described below,
each contributes to greater difficulty in designing

tests (other than cohesion that eases it) over
traditional testing. The feature will be described
and then its effect on testing over traditional
testing will be given.

Encapsulation
Encapsulation is used to restrict access to some

of an object’s attributes and methods. When a
program is written procedurally, then this is not
as much of an issue because programs are
typically full units whose private or protected
methods are not modified by outside programs.

In object-oriented programs, it can become

difficult to observe object interactions with
encapsulation, especially when variables and
methods are not visible outside a class (Khatri, et
al., 2011). This restricted visibility means that it
might be more difficult to be aware of an object’s
state, which is important because private fields
and methods can be affected, such as with getters

or setters. Testing is therefore more difficult
when the state of the object is important for a
class test case and strong encapsulation is used

(Bhadauria, Kothari, & Prasad, 2011). Of course,
it is also important for class and cluster testing
because a class’s or other classes’ methods may
influence an object’s state. If part of that state

cannot be observed, then it will be difficult to not
only design test cases, but also to observe testing
results.

If it is the case that an object is strongly
encapsulated, it is important to find a way to
verify that private fields are correct if they are
modified by other classes (Jain, 2008). The
ability to control a test’s input may also be
difficult because the initial state cannot be

determined, either (Badri & Toure, 2012). This

might mean creating new methods to display a
class’s state, which may or may not go against
the class goals as designed (Badauria, et al.,
2011). Perhaps the attribute was designed to be
invisible to all objects due to security concerns.

Inheritance
It does not make much sense to talk about
inheritance in the case of a procedural program.
The only near comparison is the reuse of methods
or structures, but this should not be as complex
as in object-oriented programs. On the other
hand, inheritance is a method of sharing

attributes and behavior from pre-existing classes
to other subclasses. When one class is a subclass

of another, it does not guarantee that all the
inherited methods are still correct if they have
been verified in the superclass (Khatri, et al.,
2011). The superclass being well tested will not
mean that all the classes that inherit it will be

correct. Any new methods or attributes that have
been added to the subclass may affect properties
inherited by the subclass. Yeresime et al
(Yeresime, et al., 2012) describe an empirical
measure of inheritance, Depth of Inheritance Tree
or DIT. DIT refers to the maximum length of a

path from a class to the root class in an
inheritance tree (Badri & Toure, 2012). The
deeper a class in the tree, the higher the number
of methods that can be inherited; this makes its

behavior more complex, more difficult to predict,
hence more difficult to design effective test cases
(Yeresime, et al., 2012).

These issues result from invisible dependencies
between parent and child classes. A child cannot
then be tested without its parent class because
errors in behavior might easily propagate down
the inheritance tree (Badauria, et al., 2011).
Another issue may arise when an inherited

method is changed in the subclass, but the

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 45

www.aitp-edsig.org - www.jisar.org

subclass has an untouched, inherited method that
uses the changed method. The overridden
method and untouched inherited method need to
be tested. In the example ahead, getNum() of

Child may be called, but it will return a value that
would be unexpected by examining Parent. (See
Figure 6)

public class Parent{
 int num;
 public void setNum(int n){

 num = n;
 }
 public void getNum(){
 return mult();

 }
 public int mult(){

 return num * 2;
 }
}// end class

public class Child extends Parent{
 public int mult(){
 return num * 4;

 }
}// end class

Figure 6 Inheritance Example

Yeresime et al also define a metric for measuring

a different kind of complexity, Number of Children

(NOC) (Yeresime, et al., 2012). NOC is the
number of immediate sub-classes in a class
hierarchy and is meant to be a measure of the
influence a class may have over the system as a
whole (Badri & Toure, 2012). This would be used
as part of cluster and system testing to determine

how much emphasis should be put into testing
that particular class.

These two metrics, DIT and NOC, are taken from
the Chidamber and Kemerer metric suite. They
can be used to determine the overhead involved
in testing. The advice given by Yeresime is that

if DIT is greater than six, then design complexity

is high and testing overhead can be large. If the
NOC is similarly high, then the design of abstract
classes is diluted. The abstraction of classes is
not utilized or the designed abstract classes are
too general. Yeresime et al, also state that these
metrics are untrustworthy for determining faults

themselves and cannot be used to measure fault-
proneness (Yeresime, Et al., 2012). It is difficult
to assign inheritance a precisely measurable
metric at this point, as inheritance comes in many
forms, and inheritance trees can become very
complex. It is therefore important– while still

using inheritance effectively – to try to keep
inheritance as simple as possible.

Polymorphism

Procedural languages do not have a very good
comparison to polymorphism. Polymorphism
allows attributes of an object to take multiple
forms or data types. In addition, an operation
may return more than one type of data or may
accept more than one type of data for parameters
(Khatri, et al., 2011).

Polymorphism is crucial to object-oriented
programming and helps make it versatile and
reusable (Bhadauria, et al., 2011). But all the

different forms an object may take should be
tested. A class or group of classes should be

designed well enough so that the overhead
required to test is low. For example, a class such
as shown in the next figure is not advisable:

public class Foo{
 Object o1;

 Object o2;
 }// end class

Figure 7 Object can Morph into any other Class.

The reason for this cautionary note is that o1 and
o2 can take almost any form because Object is

the superclass of all objects in the Java language.
This would make testing a Herculean task as o1
and o2 could become almost any data type.
Polymorphism should still be used, but the

attributes of a class should be more limited and
well-defined, in regards to both design and
testing. As stated by Hayes (1993), “testing
should be used to ensure that data abstraction
and value restriction are implemented properly.”
In Figure 8, Shape is a class that has three

subclasses, Triangle, Square, and Circle. There
are still nine possible combinations that shape1
and shape2 can take, but this is much more
manageable than the first example. The testing
of attributes should be done in unit and class

testing. Other testing concerns include methods
with return values that are polymorphic as well as

parameters that are polymorphic. This would
more readily be accommodated in cluster or
system testing.

public class Bar{
 Shape shape1;

 Shape shape2;
 …
 }// end class

Figure 8 Well Defined, Limited Attributes

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 46

www.aitp-edsig.org - www.jisar.org

According to Jain (Jain, 2008), the first major
type of polymorphism is called “ad hoc
polymorphism.” This type of polymorphism is
considered completely syntactical, that is, entities

are polymorphic only because they share a name
and do not have to be behaviorally linked. This
can best be explained by examining its first
subtype, overloading. Overloading refers to
separate methods which share a name. These
methods may have completely different
parameters and method bodies. A group of

overloaded methods can be treated as completely
separate methods from one another during
testing without any extra effort. The second type
of ad hoc polymorphism, coercion, is a conversion

from one class or data type to another during
code execution. This is also fairly easy to test

because the conversion type can be determined
statically from code. For example, when 0.50 *
someInt + 6.9 is executed, the integer someInt
will be converted to a float or double to coincide
with the data type of 0.50.

A second major type of polymorphism is called

universal polymorphism. This is considered to be
“true” polymorphism, and refers to an object
being able to become many different data types
(Jain, 2008). This is an umbrella for two
subtypes, inclusive and parametric
polymorphism. Inclusive polymorphism is

polymorphism where a subclass can be used in

place of a superclass (see Dynamic Binding). In
parametric polymorphism a method or object can
be written in a generic manner through
parameters which are given a class value when
the object is instantiated. In this way
parameterized types are not “written in stone,”

which implies they are not dependent on any one
class. An object or function can be used in
different contexts without any conversion or run-
time testing needed in this type.

These types of polymorphism should be taken
into account for testing. Indeed, understanding

all the interactions that can result from the

polymorphic nature of some objects can be very
difficult (but necessary) to keep in mind when
developing test cases (Jain, 2008). Ad hoc
polymorphism is less testing intense because the
tests can be derived statically. Universal
polymorphism, as the name might imply, is more

difficult to test because the forms an entity can
take may be wide-ranging.

Cohesion
Cohesion is a measure of the degree to which the

methods of a class create a single, well-defined

class (Khatri, et al., 2011). In procedural
programming, cohesion refers how well a module
of code (typically a file) belongs together as a
single unit. Most of the rest of this discussion

talks about how a class is cohesive in terms of
instance variables. Procedural programs do not
have instance variables, but instead information
is passed between methods as parameters.
Therefore, cohesion in the procedural realm is
concerned with methods dealing with similar
parameters and functionality. In OO, if a class is

cohesive (its methods contribute to the class as a
single unit) then the class is reusable, more
reliable, and more easily understood. Cohesion
is related to coupling; if there is high cohesion,

there is low coupling and vice-versa (Khatri, et
al., 2011). High cohesion means that the

methods within a class are similar in the variables
used and the tasks they perform. This means test
data are easier to create and more easily
understood. Low cohesion means that there are
many different types of data that need to be
defined for a specific class (Yeresime, et al.,
2013). This complexity in design leads to higher

costs of testing, and renders testing itself more
error-prone.
Another defined metric for this testing factor is
the Lack of Cohesion in Methods (LCOM). LCOM
is defined as the mathematical difference
between the number of methods whose instance

variables are completely dissimilar, and the

number of methods whose instance variables are
shared (Yeresime, et al., 2012). See Figure 9.

Consider the three sets of instance variables
for a class with three methods:

1: {a, b, c, d, e}l 2:{a, b, e}, and 3: {x, y.
z}

Figure 9 Method Cohesion

Methods 1 and 2 have shared instance variables,
and, therefore, have cohesion. However, 1 and 3

and 2 and 3 have no shared instance variables,
and therefore no cohesion. In this case, the
LCOM would be one (2 non-cohesive method pairs

– 1 cohesive method pair). If LCOM is high, it
means that a class is not cohesive (and might be
a candidate for refactoring into two classes. At the

testing stage, a class will need to have different
testing sets for the different methods rather than
one testing set for the entire class. This leads to
confusion and overall complexity of the testing
process.

LCOM is found in the same suite as DIT and NOC

(the Chidamber and Kemerer metric suite)
(Yeresime, et al., 2012). The authors Badri and

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 47

www.aitp-edsig.org - www.jisar.org

Fadel (Badri & Toure, 2012) found that LCOM and
lines of code (LOC) were the most predictive
testing metrics over DIT, NOC, (both previously
discussed) and CBO which is described below.

Coupling
Coupling is a measure of the dependency
between modules. Strong coupling is undesirable
for many reasons, chiefly of which is that it
prevents the change of components
independently of the whole. (Also, many feel

strong coupling cohesion is the antithesis of
highly-valued high cohesion, which arguably
results in low coupling) – Strong coupling means
that all (or many) of the methods coupled

together need to be understood as a set, instead
of each class operating as its own unit (Khatri, et

al., 2011). Strong coupling negatively
contributes to testing, because it implies that unit
testing cannot be done effectively. In good
design, coupling is kept to a minimum especially
for a large or complex system where coupling
could result in cluster and system testing
absorbing the majority of testing resources

(Badauria, et al., 2011).

An additional Chidamber and Kemerer metric is
Coupling Between Objects (CBO) (Yeresime, et
al., 2012). CBO is a count of the number of
classes to which a class is coupled (Badri & Toure,

2013), and represents still another measure of

complexity. High CBO leads to less reliability, and
the higher interoperability between classes
causes unit testing to be difficult (Yeresime, et al.,
2012). However, some interoperability is
generally required for object-oriented
programming as objects need to be able to

communicate in some way. This implies the
necessity of cluster testing.

Other metrics for software complexity are
efferent coupling (Ce) and afferent coupling (Ca).
These come from the R. C. Martins metric suite
(Yeresime, et al., 2012). Efferent coupling occurs

between packages and is the measure of all the

classes external to a package that are used within
the package (See Figure 10). In contrast,
afferent coupling between packages counts all the
classes external to a package that are dependent
on the classes within a package. (See Figure 11)
In conjunction, these two help measure the

stability of a package as a whole (Yeresime, et al.,

2012), where stability is measured
(Scale 0 to 1 with 0 absolute stability; 1
absolutely unstable.) Stability, in a sense then, is
a measure of how well a package can adapt to

change. In a testing sense, stability can imply
how changes in one particular package might
impact other classes. If this impact is high due to
high instability, then

much regression testing must be done in other
packages as part of cluster or system testing.

Figure 10 Efferent coupling (Ce)

Figure 11 Afferent coupling (Ca)

Dynamic Binding
Dynamic binding is a result of either inclusive
polymorphism or type parameterization
polymorphism in some languages. For example,
in Java the return type of a function or even the
types of some fields can be decided at run-time

rather than compile time: (Figure 12) Dynamic
binding introduces concerns when deciding how
to design test cases, because the exact data type
of attributes cannot be known statically (Khatri,
et al., 2011) .

public class Foo <E> {
 E field;
 public E getField(){
 return field;
 }
 public void setField (E field){

 this.field = field;
 }
}

Figure 12 Dynamic Binding is Determined at
Runtime

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 48

www.aitp-edsig.org - www.jisar.org

The class in Figure 12 may be instantiated in
many ways and with many data types through
parameterization. Thus when designing test cases
in parameter polymorphism, it may only be

necessary to test based on how other classes in
the program will instantiate Foo. Those data
types that are used for parameterization in other
classes must be considered for testing cases, but
others need not be. This would be a part of
cluster or system testing. Unit testing or class
testing would be difficult to accomplish because it

would not be known (without looking at the
system as a whole) how Foo might be
instantiated. The behaviors and properties of E
might be incredibly varied. Class and unit testing

should therefore probably not be done in this case

of dynamic binding, due to its complexity as a

unit. With the whole system, it can most likely be
determined which data types E might take.

Inclusive polymorphism, in contrast, may be a
simpler form of dynamic binding to test (Jain,
2008). This is because it is often known what

classes inherit a superclass. In this way, it can
be known what types an object may be bound to
at run-time. All of these dynamic bindings must
be included in a test case.

Abstraction
An abstract class is a type of class that cannot be

instantiated. An interface is used as a template
for other classes. If the class is just abstract and
not an interface, it provides useful methods as
well as variable fields (Khatri, et al., 2011).
However, these defined methods cannot be
tested directly and analysis is done from their

subclasses, because one may not instantiate an
abstract class or an interface in most languages
(Badauria, et al., 2011). … This can lead to major
overhead. If an abstract class is inherited by
more than one class, how many of those child
classes should be tested? Even if the child classes
have not overridden the inherited methods, all

would need to be tested because the abstract
class itself cannot be tested, directly.

An R.C. Martins metric described by Yeresime et
al is abstractness (Yeresime, et al., 2012).
Abstractness is a ratio of the number of abstract
classes/interfaces to the total number of classes

in a package. This measure is used with the
instability measure (see Coupling) to create a line
graph (Yeresime, et al., 2012). (See Figure 13)
These points along the “main sequence” line are
considered to be balanced between abstraction
and stability. These are well designed and more

easily tested. This means that more abstract and
unstable, the more difficult to test.

Figure 13 A-I Graph (Yeresime, et al., 2012)

8. CONCLUSION

Object-oriented testing is based not only on both
the input and output of an object’s methods, but

also how that input and output may influence the
object’s state. . While the many beneficial
features of the object-oriented paradigm are
important, the increases in program complexity
(sometimes in unintended and unseen ways)
often negatively impacts testing in terms of effort

and time. Some of these features, like cohesion
help lower the amount of testing required, but
others cause testing efforts to rise.

Traditional testing involves the viewing of input
and output of a program in a procedural manner.
Test cases tend to be one dimensional. In object-

oriented testing, however, test cases are two
dimensional, because changes in an object’s state
must be considered. Traditional testing involves
both unit and system testing, while object-
oriented testing requires class testing (for how
the methods of a single object work together) and
cluster testing (for how coupled objects change

each other’s’ states). Thus, it is important to note
that verification testing (the testing done by the
developers) has been truly changed by the
object-oriented paradigm, while validation (that
done by the end-user) has not.

Moving forward, it will continue to be important
to define more and better ways for testing object-
oriented programs. Some already exist, but they
are wide-ranging and there has been no major
consensus as to what the best way to test is or
what factors are most important in testing. Most
focus on the fact that order to test object-oriented

modules is not as definite as in traditional
programs, where the order of tests follows a
procedural path. In object oriented testing, an

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 49

www.aitp-edsig.org - www.jisar.org

object may send a message to another object at
any time.

9. REFERENCES

Badri, Mourad, and Fadel Toure, "Empirical

Analysis Of Object-Oriented Design Metrics
For Predicting Unit Testing Effort Of Classes,"
Journal Of Software Engineering &
Applications 5.7 (2012): 513-526.

Bhadauria, Sarita Singh, Abhay Kothari, and Lalji
Prasad, "A Full Featured Component (Object-
Oriented) Based Architecture Testing Tool"
International Journal Of Computer Science

Issues (IJCSI) 8.4 (2011): 618-627.

Gu, Dechang, Yin Zhong, and Sarwar Ali. “On
Testing of Classes in Object-Oriented
Programs” Proceedings of the 1994
Conference of the Centre for Advanced
Studies on Collaborative Research

Hayes, Jane Huffman. “Testing of Object-

Oriented Programming Systems (OOPS): A
Fault-Based Approach,” Notes in Computer
Science, Vol. 858 (1994): 205-220.

Jain, Ajeet K. "Testing Polymorphism in Object-

Oriented Programming." ICFAI Journal of

Computer Sciences 2.4 (2008): pages 43-53.

Johnson, Jr., Morris S. A Survey of Testing

Techniques for Object-Oriented Systems,

Proceedings of the 1996 Conference of the
Centre for Advanced Studies on Collaborative
research (CASCON '96)

Khatri, Mrs. Sujata, Chhillar Dr. R. S., and
Sangwan Mrs. Arti "Analysis Of Factors
Affecting Testing In Object-oriented
Systems," International Journal On Computer
Science And Engineering 3 (2011): 1191.

Labiche, Y., Thevenod-Fosse, P., Waeselynck, H.,

and Durand, M.-H, "Testing Levels for Object-
Oriented Software," Proceedings of the 22nd
International Conference on Software
Engineering, pages 136-145

Naik, Kshirasagar and Priyadarshi Tripathy

Software Testing And Quality Assurance:
Theory And Practice. John Wiley & Sons,
2008 pages 7-27

Turner, C.D. and Robson, D.J. "The State-Based

Testing of Object-Oriented Programs,"
Software Maintenance, 1993 CSM-93,

Proceedings., Conference on Software
Maintenance pages 302-310, 27-30 Sep1993

Yeresime, Suresh, Pati Jayadeep, and Rath

Santanu Ku "Effectiveness of Software
Metrics For Object-Oriented System,"

Procedia Technology, Volume 6, 2nd

International Conference on Communication,
Computing &Security [ICCCS-2012] 420-42

